Designing a Public Key Cryptosystem Based on Quasi-cyclic Subspace Subcodes of Reed-Solomon Codes

  • Thierry P. BergerEmail author
  • Cheikh Thiécoumba GueyeEmail author
  • Jean Belo KlamtiEmail author
  • Olivier RuattaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1133)


In this paper we introduce a code-based cryptosystem using quasi-cyclic generalized subspace subcodes of Generalized Reed-Solomon codes in order to reduce the public key size. In our scheme the underlying Generalized Reed-Solomon code is not secret, so the classical attacks such as square code or folding attacks have no more purpose against it. In addition one part of the security of this scheme is based on hard problems in coding theory like Equivalence Subcodes (ES) Problem. We propose some parameters to reach at least a security level of 128 and 192 bits. We make a public key size comparison with some well established code-based public key encryption schemes. We also see that for the 128 bits security level the key size of our proposals are often better than the code-based schemes in competition for NIST’s second round.


Mceliece public key cryptosystem Subspace subcodes Reed-Solomon codes Quasi-cyclic codes 


  1. 1.
    Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAcrypt: Low-density parity-check code-based cryptographic systems, 30 March 2019.
  2. 2.
    Barelli, E.: On the security of some compact keys for McEliece scheme. CoRR abs/1803.05289 (2018).
  3. 3.
    Berger, T.P., El Amrani, N.: Codes over \(\cal{L}(GF(2)^m,GF(2)^m)\), MDS diffusion matrices and cryptographic applications. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 197–214. Springer, Cham (2015). Scholar
  4. 4.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). Scholar
  5. 5.
    Berger, T.P., Gaborit, P., Ruatta, O.: Gabidulin matrix codes and their application to small ciphertext size cryptosystems. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 247–266. Springer, Cham (2017). Scholar
  6. 6.
    Berger, T.P., Gueye, C.T., Klamti, J.B.: A NP-complete problem in coding theory with application to code based cryptography. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 230–237. Springer, Cham (2017). Scholar
  7. 7.
    Berger, T.P., Gueye, C.T., Klamti, J.B.: Generalized subspace subcodes with application in cryptology. to appear in IEEE Transactions on Information Theory, Online ISSN: 1557–9654, pp. 1–17 (2019). Scholar
  8. 8.
    Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography. Springer-Verlag, Heidleberg (2008). Scholar
  10. 10.
    Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). Scholar
  11. 11.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997). Computational algebra and number theoryMathSciNetCrossRefGoogle Scholar
  12. 12.
    Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Crypt. 73(2), 641–666 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). Scholar
  14. 14.
    Faugère, J., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.: Structural cryptanalysis of McEliece schemes with compact keys. Des. Codes Crypt. 79(1), 87–112 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). Scholar
  16. 16.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). CrossRefzbMATHGoogle Scholar
  17. 17.
    Hattori, M., McEliece, R.J., Lin, W.: Subspace subcodes of Reed-Solomon codes. In: Proceedings of IEEE International Symposium on Information Theory 1994, p. 430. IEEE (1994)Google Scholar
  18. 18.
    Huffman, W.C.: Groups and codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998)Google Scholar
  19. 19.
    Karan K. and Rosenthal J. and Weger V.: Encryption scheme based on expanded reed-solomon codes. arXiv:1906.00745
  20. 20.
    Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017). Scholar
  21. 21.
    McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep., Jet Prop. Lab., California Institute of Technology, Pasadena, CA, Rep. 44, pp. 114–116, January 1978Google Scholar
  22. 22.
    May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). Scholar
  23. 23.
    May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). Scholar
  24. 24.
    Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). Scholar
  25. 25.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inf. Theory 15, 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  26. 26.
    NIST: Post-quantum crypto project, December 2016.
  27. 27.
  28. 28.
    Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sendrier, N.: QC-MDPC-McEliece: a public-key code-based encryption scheme based on quasi-cyclic moderate density parity check codes. In: Workshop “Post-Quantum Cryptography: Recent Results and Trends”. Fukuoka, Japan, November 2014Google Scholar
  30. 30.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society (1994)Google Scholar
  31. 31.
    Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proceedings of IEEE ISIT 06, pp. 1733–1737. IEEE, Seattle (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.XLIM UMR 7252 Université de Limoges - CNRSLimogesFrance
  2. 2.Department de Mathématiques et Informatique LACGAAUniversité Cheikh Anta Diop de Dakar - Faculté des Sciences et TechniquesDakarSenegal

Personalised recommendations