Advertisement

Adipose Tumor Microenvironment

  • Abbie Zewdu
  • Lucia CasadeiEmail author
  • Raphael E. Pollock
  • Danielle Braggio
Chapter
  • 87 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1226)

Abstract

The term “adipose tissue” represents a multicellular and multifunctional organ involved in lipid storage, in hormone and temperature regulation, and in the protection of bones and vital organs from impact-based damage. Emerging evidence now suggests a more malignant role of adipose tissue in promoting cancer onset and progression via the release of secreted factors such as interleukin-6 (IL6) and extracellular vesicles (EVs). These adipose-source factors subsequently affect various aspects of tumorigenesis and/or cancer progression by either directly enhancing the tumor cell oncogenic phenotype or indirectly by the stimulating adjacent normal cells to adopt a more pro-cancer phenotype. Due to the recent growing interest in the role of IL6 and EVs released by adipose tissue in cancer promotion and progression, we are focusing on the protumorigenic impact of fat tissue via IL6 and EV secretion.

Keywords

Adipose tumor Tumor microenvironment Adipokines Inflammation Interleukin-6 Glycoprotein 130 Signal transduction Extracellular vesicles Cell-to-cell communication Cancer Liposarcoma Adipocytes Preadipocytes Macrophages Fibroblasts 

References

  1. 1.
    Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231:R77–R99PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850PubMedPubMedCentralGoogle Scholar
  4. 4.
    Jensen MD (2006) Adipose tissue as an endocrine organ: implications of its distribution on free fatty acid metabolism. Eur Hear J Suppl 8:B13–B19CrossRefGoogle Scholar
  5. 5.
    Heaton GM, Wagenvoord RJ, Kemp A, Nicholls DG (1978) Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82:515–521PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ricquier D, Kader JC (1976) Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73:577–583PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cypess AM et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    van Marken Lichtenbelt WD et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Virtanen KA et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Saely CH, Geiger K, Drexel H (2012) Brown versus white adipose tissue: a mini-review. Gerontology 58:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fat Acids 73:9–15CrossRefGoogle Scholar
  12. 12.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bódis K, Roden M (2018) Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Investig 48:e13017CrossRefGoogle Scholar
  14. 14.
    Lakkis JI, Weir MR (2018) Obesity and kidney disease. Prog Cardiovasc Dis 61:157–167PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zielińska A et al (2019) The role of adipose tissue in the pathogenesis of Crohn’s disease. Pharmacol Rep 71:105–111PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Riondino S et al (2014) Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J Gastroenterol 20:5177PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ng M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet (London England) 384:766–781CrossRefGoogle Scholar
  18. 18.
    Schneider H, Dietrich ES, Venetz WP (2010) Trends and stabilization up to 2022 in overweight and obesity in Switzerland, comparison to France, UK, US and Australia. Int J Environ Res Public Health 7:460–472PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28:629–636PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hutley L, Prins JB (2005) Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 330:280–289PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Reeves GK et al (2007) Cancer incidence and mortality in relation to body mass index in the million women study: cohort study. BMJ 335:1134PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Petrelli JM, Calle EE, Rodriguez C, Thun MJ (2002) Body mass index, height, and postmenopausal breast cancer mortality in a prospective cohort of US women. Cancer Causes Control 13:325–332PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Adams TD, Hunt SC (2009) Cancer and obesity: effect of bariatric surgery. World J Surg 33:2028–2033PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Arendt LM et al (2013) Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res 73:6080–6093PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wang Z et al (2011) High fat diet induces formation of spontaneous liposarcoma in mouse adipose tissue with overexpression of interleukin 22. PLoS One 6:e23737PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sciacca L et al (2013) Clinical and molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutr Metab Cardiovasc Dis 23:808–815PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Bougaret L et al (2017) Supernatants of adipocytes from obese versus normal weight women and breast cancer cells: in vitro impact on angiogenesis. J Cell Physiol 232:1808–1816PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Divella R, De Luca R, Abbate I, Naglieri E, Daniele A (2016) Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer 7:2346–2359PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Scherer PE (2016) The multifaceted roles of adipose tissue—therapeutic targets for diabetes and beyond: the 2015 banting lecture. Diabetes 65:1452–1461PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Durcin M et al (2017) Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles 6:1305677PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kranendonk MEG et al (2014) Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity 22:1296–1308PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lazar I et al (2016) Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res 76:4051–4057PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gernapudi R et al (2015) Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat 150:685–695PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383:13–20PubMedCrossRefGoogle Scholar
  39. 39.
    Thomou T et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–455PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Koeck ES et al (2014) Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res 192:268–275PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mohamed-Ali V et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82:4196–4200PubMedPubMedCentralGoogle Scholar
  42. 42.
    Carey AL et al (2004) Interleukin-6 and tumor necrosis factor-alpha are not increased in patients with type 2 diabetes: evidence that plasma interleukin-6 is related to fat mass and not insulin responsiveness. Diabetologia 47:1029–1037PubMedPubMedCentralGoogle Scholar
  43. 43.
    Massa M et al (2016) Interaction between breast cancer cells and adipose tissue cells derived from fat grafting. Aesthet Surg J 36:358–363PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Laurent V et al (2016) Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun 7:10230PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Park EJ et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32:550–570PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    van Hall G et al (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Prystaz K et al (2018) Distinct effects of IL-6 classic and trans-signaling in bone fracture healing. Am J Pathol 188:474–490PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hobbs MV, McEvilly RJ, Koch RJ, Cardenas GJ, Noonan DJ (1991) Interleukin-6 production by murine B cells and B cell lines. Cell Immunol 132:442–450PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kitani A et al (1992) Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol 88:75–83PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yang R et al (2016) IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21-producing B helper CD8+ T cells. J Exp Med 213:2281–2291PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kudo O et al (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hirano T et al (1990) Interleukin 6 and its receptor in the immune response and hematopoiesis. Int J Cell Cloning 8:155–167PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Aparicio-Siegmund S, Deseke M, Lickert A, Garbers C (2017) Trans-signaling of interleukin-6 (IL-6) is mediated by the soluble IL-6 receptor, but not by soluble CD5. Biochem Biophys Res Commun 484:808–812PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Schuett H et al (2012) Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32:281–290PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Catar R et al (2017) IL-6 trans-signaling links inflammation with angiogenesis in the peritoneal membrane. J Am Soc Nephrol 28(4):1188–1199.  https://doi.org/10.1681/ASN.2015101169CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lacroix M et al (2015) Novel insights into interleukin 6 (IL-6) cis- and trans-signaling pathways by differentially manipulating the assembly of the IL-6 signaling complex. J Biol Chem 290:26943–26953PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wei L-H et al (2013) The role of IL-6 trans-signaling in vascular leakage: implications for ovarian hyperstimulation syndrome in a murine model. J Clin Endocrinol Metab 98:E472–E484PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ebihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A (2011) Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Investig Ophthalmol Vis Sci 52:8549CrossRefGoogle Scholar
  60. 60.
    Howlett M, Menheniott TR, Judd LM, Giraud AS (2009) Cytokine signalling via gp130 in gastric cancer. Biochim Biophys Acta, Mol Cell Res 1793:1623–1633PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Echevarria FD, Rickman AE, Sappington RM (2016) Interleukin-6: a constitutive modulator of glycoprotein 130, neuroinflammatory and cell survival signaling in retina. J Clin Cell Immunol 7:1–3CrossRefGoogle Scholar
  62. 62.
    Gerhartz C et al (1996) Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem 271:12991–12998PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bastard J-P et al (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85:3338–3342PubMedPubMedCentralGoogle Scholar
  64. 64.
    Calvo VP, Sacca PA, Tesone AJ, Vidal L, Calvo JC (2010) Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells. Mol Med Rep 3(433–9)Google Scholar
  65. 65.
    Amemori S et al (2007) Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol 292:G923–G929PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nieman KM et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lee J et al (2017) Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One 12:e0174126PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sheng X et al (2017) Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol Cancer Res 15:1704–1713PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Behan JW et al (2009) Adipocytes impair leukemia treatment in mice. Cancer Res 69:7867–7874PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sheng X et al (2016) Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget 7(73147–73159):73147PubMedPubMedCentralGoogle Scholar
  71. 71.
    He J-Y et al (2018) Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of lysyl hydroxylase-2 expression. Cell Commun Signal 16:100PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fujisaki K et al (2015) Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat 150:255–263PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wang F et al (2014) Mammary fat of breast cancer: gene expression profiling and functional characterization. PLoS One 9:e109742PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gyamfi J, Lee Y-H, Eom M, Choi J (2018) Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep 8:8859PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Weng Y-S et al (2019) MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 18:42PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wang Y, Zhou BP (2011) Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 30:603–611PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fedele M, Cerchia L, Chiappetta G (2017) The epithelial-to-mesenchymal transition in breast cancer: focus on basal-like carcinomas. Cancers (Basel) 9:E134CrossRefGoogle Scholar
  78. 78.
    Wang Y, Zhou BP (2013) Epithelial-mesenchymal transition—A hallmark of breast cancer metastasis. Cancer Hallm 1:38–49PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Harkins JM et al (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. J Nutr 134:2673–2677PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kim HS et al (2018) IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res 37:200PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mayi TH et al (2012) Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem 287:21904–21913PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Casadei L et al (2017) Exosome-derived miR-25-3p and miR-92a-3p stimulate liposarcoma progression. Cancer Res 77:3846–3856PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hilvo M, Orešiè AM (2012) Regulation of lipid metabolism in breast cancer provides diagnostic and therapeutic opportunities. Clin Lipidol 7:177–188CrossRefGoogle Scholar
  84. 84.
    Pucer A et al (2013) Group X secreted phospholipase A(2) induces lipid droplet formation and prolongs breast cancer cell survival. Mol Cancer 12:111PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lettiero B, Inasu M, Kimbung S, Borgquist S (2018) Insensitivity to atorvastatin is associated with increased accumulation of intracellular lipid droplets and fatty acid metabolism in breast cancer cells. Sci Rep 8:5462PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sun X et al (2014) IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene.  https://doi.org/10.1038/onc.2014.158
  87. 87.
    Bhat-Nakshatri P, Newton TR, Goulet R, Nakshatri H, Nakshatri H (1998) NF-kappaB activation and interleukin 6 production in fibroblasts by estrogen receptor-negative breast cancer cell-derived interleukin 1alpha. Proc Natl Acad Sci U S A 95:6971–6976PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chiu JJ, Sgagias MK, Cowan KH (1996) Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Cancer Res 2:215–221PubMedPubMedCentralGoogle Scholar
  89. 89.
    Strong AL et al (2017) Obesity enhances the conversion of adipose-derived stromal/stem cells into carcinoma-associated fibroblast leading to cancer cell proliferation and progression to an invasive phenotype. Stem Cells Int 2017:1–11CrossRefGoogle Scholar
  90. 90.
    Maia J, Caja S, Moraes MCS, Couto N, Costa-Silva B (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 6:18PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wong DE et al (2019) Adipose-derived stem cell extracellular vesicles: a systematic review*. J Plast Reconstr Aesthetic Surg 72:1207–1218CrossRefGoogle Scholar
  92. 92.
    Bebelman MP, Smit MJ, Pegtel DM, Baglio SR (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Chalmin F et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471PubMedPubMedCentralGoogle Scholar
  94. 94.
    Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to Interleukin-2. Cancer Res 67:7458–7466PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Yáñez-Mó M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Puhka M et al (2017) Metabolomic profiling of extracellular vesicles and alternative normalization methods reveal enriched metabolites and strategies to study prostate cancer-related changes. Theranostics 7:3824–3841PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci 114:E9066–E9075PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Thakur BK et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kogure A, Kosaka N, Ochiya T (2019) Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci 26:7PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Maacha S et al (2019) Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 18:55PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641CrossRefGoogle Scholar
  108. 108.
    Zomer A et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    YANG L, WU X-H, WANG D, LUO C-L, CHEN L-X (2013) Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep 8:1272–1278PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Pan L et al (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143:991–1004PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Qu J-L et al (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 41:875–880PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Matsumoto A et al (2017) Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci 108:1803–1810PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Aga M et al (2014) Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33:4613–4622PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ramteke A et al (2015) Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog 54:554–565PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598CrossRefGoogle Scholar
  116. 116.
    Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lazar I, Clement E, Attane C, Muller C, Nieto L (2018) A new role for extracellular vesicles: how small vesicles can feed tumors’ big appetite. J Lipid Res 59:1793–1804PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bochet L et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5668PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Zhang X et al (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Guo W et al (2017) Exosomes: new players in cancer. Oncol Rep 38:665–675PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Antonyak MA et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci 108:4852–4857PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci 106:3794–3799PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–9630PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Webber JP et al (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34:290–302PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Robado de Lope L, Alcíbar OL, Amor López A, Hergueta-Redondo M, Peinado H (2018) Tumour–adipose tissue crosstalk: fuelling tumour metastasis by extracellular vesicles. Philos Trans R Soc B Biol Sci 373:20160485CrossRefGoogle Scholar
  127. 127.
    Wu L et al (2016) Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumor Biol 37:12169–12180CrossRefGoogle Scholar
  128. 128.
    Chow A et al (2015) Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-κB. Sci Rep 4:5750CrossRefGoogle Scholar
  129. 129.
    Fabbri M et al (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci 109:E2110–E2116PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Baglio SR et al (2017) Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res 23:3721–3733PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Sagar G et al (2016) Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 65:1165–1174PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Hu W et al (2019) Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 1864:1091–1102PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wang S et al (2018) Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol 11:82PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Song YH et al (2017) Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells. Matrix Biol 60–61:190–205PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Smyth LA et al (2013) CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol 43:2430–2440PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Okoye IS et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41:89–103PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Yang M et al (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Zheng P et al (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36:53PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Boelens MC et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Shimoda M et al (2014) Loss of the timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 16:889–901PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Roccaro AM et al (2013) BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Gu L, Findley HW, Zhou M (2002) MDM2 induces NF-κB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 99:3367PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Suzuki A et al (1998) Role of MDM2 overexpression in doxorubicin resistance of breast carcinoma. Jpn J Cancer Res 89:221PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Anderson JL et al (2014) Phosphoproteomic profiling reveals IL6-mediated paracrine signaling within the Ewing sarcoma family of tumors. Mol Cancer Res 12:1740–1754PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Huang R et al (2014) Increased STAT1 signaling in endocrine-resistant breast cancer. PLoS One 9:e94226PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Zhang K et al (2018) The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. J Cell Mol Med 22:3679.  https://doi.org/10.1111/jcmm.13651CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Kong E et al (2015) STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior. Sci Rep 5:9009PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Huang S et al (2018) Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Cancer Sci 109:678–687PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Teipel R et al (2015) Siltuximab for multicentric Castleman disease—letter. Clin Cancer Res 21:4740PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    van Rhee F et al (2014) Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol 15:966–974PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Yokota S et al (2008) Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371:998–1006PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Yokota S et al (2016) Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Ann Rheum Dis 75:1654–1660PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abbie Zewdu
    • 1
    • 2
  • Lucia Casadei
    • 1
    • 2
    Email author
  • Raphael E. Pollock
    • 1
    • 2
  • Danielle Braggio
    • 1
    • 2
  1. 1.Program in Translational TherapeuticsThe James Comprehensive Cancer Center, The Ohio State UniversityColumbusUSA
  2. 2.Department of SurgeryThe Ohio State UniversityColumbusUSA

Personalised recommendations