Egomotion Estimation Under Planar Motion with an RGB-D Camera

  • Xuelan MuEmail author
  • Zhixin Hou
  • Yigong Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11935)


In this paper, we propose a method for egomotion estimation of an indoor mobile robot under planar motion with an RGB-D camera. Our approach mainly deals with the corridor-like structured scenarios and uses the prior knowledge of the environment: when at least one vertical plane is detected using the depth data, egomotion is estimated with one normal of the vertical plane and one point; when there are no vertical planes, a 2-point homography-based algorithm using only point correspondences is presented for the egomotion estimation. The proposed method then is used in a frame-to-frame visual odometry framework. We evaluate our algorithm on the synthetic data and show the application on the real-world data. The experiments show that the proposed approach is efficient and robust enough for egomotion estimation in the Manhattan-like environments compared with the state-of-the-art methods.


Egomotion estimation Indoor scene RGB-D camera Planar motion Visual odometry 


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Bergmann, P., Wang, R., Cremers, D.: Online photometric calibration of auto exposure video for realtime visual odometry and SLAM. IEEE Robot. Autom. Lett. 3(2), 627–634 (2018)CrossRefGoogle Scholar
  3. 3.
    Cao, Z., Sheikh, Y., Banerjee, N.K.: Real-time scalable 6DOF pose estimation for textureless objects. In: 2016 IEEE International conference on Robotics and Automation (ICRA), pp. 2441–2448. IEEE (2016)Google Scholar
  4. 4.
    Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)CrossRefGoogle Scholar
  5. 5.
    Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Robot. 33(2), 249–265 (2017)CrossRefGoogle Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Hartley, R.I.: In defence of the 8-point algorithm. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1064–1070. IEEE (1995)Google Scholar
  8. 8.
    Hu, H., Sun, H., Ye, P., Jia, Q., Gao, X.: Multiple maps for the feature-based monocular SLAM system. J. Intell. Robot. Syst. 94(2), 389–404 (2019)CrossRefGoogle Scholar
  9. 9.
    Kaess, M.: Simultaneous localization and mapping with infinite planes. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4605–4611. IEEE (2015)Google Scholar
  10. 10.
    Kim, P., Coltin, B., Kim, H.J.: Visual odometry with drift-free rotation estimation using indoor scene regularities. In: 2017 British Machine Vision Conference (2017)Google Scholar
  11. 11.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In: BMVC, vol. 2, p. 2008 (2008)Google Scholar
  12. 12.
    Le, P.H., Košecka, J.: Dense piecewise planar RGB-D SLAM for indoor environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4944–4949. IEEE (2017)Google Scholar
  13. 13.
    Li, H., Hartley, R.: Five-point motion estimation made easy. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 630–633. IEEE (2006)Google Scholar
  14. 14.
    Li, S., Calway, A.: Absolute pose estimation using multiple forms of correspondences from RGB-D frames. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4756–4761. IEEE (2016)Google Scholar
  15. 15.
    Matsuki, H., von Stumberg, L., Usenko, V., Stückler, J., Cremers, D.: Omnidirectional DSO: direct sparse odometry with fisheye cameras. IEEE Robot. Autom. Lett. 3(4), 3693–3700 (2018)CrossRefGoogle Scholar
  16. 16.
    Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)CrossRefGoogle Scholar
  17. 17.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 0756–777 (2004)CrossRefGoogle Scholar
  18. 18.
    Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I. IEEE (2004)Google Scholar
  19. 19.
    Nistér, D., Schaffalitzky, F.: Four points in two or three calibrated views: theory and practice. Int. J. Comput. Vis. 67(2), 211–231 (2006)CrossRefGoogle Scholar
  20. 20.
    Rubio, A., et al.: Efficient monocular pose estimation for complex 3D models. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1397–1402. IEEE (2015)Google Scholar
  21. 21.
    Saurer, O., Vasseur, P., Boutteau, R., Demonceaux, C., Pollefeys, M., Fraundorfer, F.: Homography based egomotion estimation with a common direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 327–341 (2016)CrossRefGoogle Scholar
  22. 22.
    Sun, H., Tang, S., Sun, S., Tong, M.: Vision odometer based on RGB-D camera. In: 2018 International Conference on Robots & Intelligent System (ICRIS), pp. 168–171. IEEE (2018)Google Scholar
  23. 23.
    Ventura, J., Arth, C., Lepetit, V.: Approximated relative pose solvers for efficient camera motion estimation. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 180–193. Springer, Cham (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations