A k-Dense-UNet for Biomedical Image Segmentation
Abstract
Medical image segmentation is the premise of many medical image applications including disease diagnosis, anatomy, and radiation therapy. This paper presents a k-Dense-UNet for segmentation of Electron Microscopy (EM) images. Firstly, based on the characteristics of the long skip connection of U-Net and the mechanism of short skip connection of DenseNet, we propose a Dense-UNet by embedding the dense blocks into U-Net, leading to deeper layers for better feature extraction. We experimentally show that Dense-UNet outperforms the popular U-Net. Secondly, we combine Dense-UNet with one of the newest U-Net variants called kU-Net into a network called k-Dense-UNet, which consists of multiple Dense-UNet submodules. Skip connections are added between the adjacent submodules, to pass information efficiently, helping the model to identify fine features. Experimental results on the ISBI 2012 EM dataset show that k-Dense-UNet achieves better performance than U-Net and some of its variants.
Keywords
Image segmentation Electron Microscopy Skip connectionNotes
Acknowledgement
The first author would like to thank Yuze Guo for helpful discussions. This work was supported by the Zhi-Yuan Chair Professorship Start-up Grant (WF220103010), and Startup Fund (WF220403029) for Youngman Research, from Shanghai Jiao Tong University.
References
- 1.Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS (2012)Google Scholar
- 2.Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
- 3.Quan, T.M., Hildebrand, D.G.C., Jeong, W.-K.: FusioNnet: a deep fully residual convolutional neural network for image segmentation in connectomics, CoRR, vol. abs/1612.05360 (2016)Google Scholar
- 4.Chen, H., Qi, X., Cheng, J.-Z., Heng, P.-A.: Deep contextual networks for neuronal structure segmentation. In: AAAI (2016)Google Scholar
- 5.Chen, K., Zhu, D., Lu, J., Luo, Y.: An adversarial and densely dilated network for connectomes segmentation. Symmetry 10, 467 (2018)CrossRefGoogle Scholar
- 6.Drozdzal, M., et al.: Learning normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 44, 1–13 (2018) CrossRefGoogle Scholar
- 7.Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: NIPS (2016)Google Scholar
- 8.He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)Google Scholar
- 9.Huang, G., Liu, Z., Van Der Maaten, L., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)Google Scholar
- 10.Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. TPAMI (2017)Google Scholar
- 11.Shen, W., Wang, B., Jiang, Y., Wang, Y., Yuille, A.L.: Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: ICCV (2017)Google Scholar
- 12.He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38CrossRefGoogle Scholar
- 13.Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)Google Scholar
- 14.Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)Google Scholar
- 15.Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat. 9, 142 (2015)CrossRefGoogle Scholar
- 16.Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
- 17.Xu, L.: Least MSE reconstruction for self-organization: (i)&(ii). In: Proceedings of 1991 International Joint Conference on Neural Networks, pp. 2363–2373 (1991)Google Scholar
- 18.Xu, L.: Least mean square error reconstruction principle for self-organizing neural-nets. Neural Netw. 6(5), 627–648 (1993)CrossRefGoogle Scholar
- 19.Xu, L.: An overview and perspectives on bidirectional intelligence: Lmser duality, double IA harmony, and causal computation. IEEE/CAA Journal of Automatica Sinica 6(4), 865–893 (2019)MathSciNetCrossRefGoogle Scholar