On the Simple Layer Potential Ansatz for the n-Dimensional Helmholtz Equation

  • Alberto Cialdea
  • Vita Leonessa
  • Angelica MalaspinaEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In the present paper we consider the Dirichlet problem for the n-dimensional Helmholtz equation. In particular we deal with the problem of representability of the solutions by means of simple layer potentials. The main result concerns the solvability of a boundary integral equation of the first kind. Such a result is here obtained by using the theories of differential forms and reducible operators.


Helmholtz equation Potential theory Integral representations 


  1. 1.
    S. Agmon. A representation theorem for solutions of the Helmholtz equation and resolvent estimates for the Laplacian. Analysis, et cetera, (1990), 39–76.Google Scholar
  2. 2.
    A. Cialdea. On oblique derivate problem for Laplace equation and connected topics. Rend. Accad. Naz. Sci. XL Mem. Mat. (5)12 (1988), no. 1, 181–200.MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. Cialdea. The simple layer potential for the biharmonic equation in n variables. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., (9) 2 (1991), 115–127.Google Scholar
  4. 4.
    A. Cialdea. The Simple-Layer Potential Approach to the Dirichlet Problem: An Extension to Higher Dimensions of Muskhelishvili Method and Applications, in C. Constanda, M. Dalla Riva, P.D. Lamberti, P. Musolino (Eds.), Integral Methods in Science and Engineering, Volume 1, Birkhäuser, (2017) 59–69 .Google Scholar
  5. 5.
    A. Cialdea, E. Dolce, A. Malaspina, V. Nanni. On an integral equation of the first kind arising in the theory of Cosserat. Intern. J. Math.24 (2013), no. 5, 21 pages.Google Scholar
  6. 6.
    A. Cialdea, E. Dolce, A. Malaspina. A complement to potential theory in the Cosserat theory. Math. Methods Appl. Sci.38 (2015), no. 3, 537–547.MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Cialdea, E. Dolce, V. Leonessa, A. Malaspina. New integral representations in the linear theory of viscoelastic materials with voids. Publ. Math. Inst. (Beograd)110(96) (2014), 49–65.MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Cialdea, G.C.Hsiao. Regularization for some boundary integral equations of the first kind in Mechanics. Rend. Accad. Naz. Sci. XL, Serie 5, Mem. Mat. Parte I19 (1995), no. 1, 25–42.MathSciNetzbMATHGoogle Scholar
  9. 9.
    A. Cialdea, V. Leonessa, A. Malaspina. Integral representations for solutions of some BVPs for the Lamé system in multiply connected domains. Bound. Value Probl. 2011, 2011:53, 25 pages.Google Scholar
  10. 10.
    A. Cialdea, V. Leonessa, A. Malaspina. On the Dirichlet and the Neumann problems for Laplace equation in multiply connected domains. Complex Var. Elliptic Equ.57 (2012), no. 10, 1035–1054.MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Cialdea, V. Leonessa, A. Malaspina. On the Dirichlet problem for the Stokes system in multiply connected domains. Abstr. Appl. Anal. 2013, Art. ID 765020 (2013), 12 pages.Google Scholar
  12. 12.
    A. Cialdea, V. Leonessa, A. Malaspina. The Dirichlet problem for second-order divergence form elliptic operators with variable coefficients: the simple layer potential ansatz. Abstr. Appl. Anal. 2015 Art. ID 276810 (2015), 11 pages.Google Scholar
  13. 13.
    D. Colton, R. Kress. Integral equation methods in scattering theory. Classics in Applied Mathematics, 72 (SIAM), Philadelphia, PA, 2013.Google Scholar
  14. 14.
    G. Fichera. Una introduzione alla teoria delle equazioni integrali singolari Rend. Mat. Roma, XIX, 17 (1958), 82–191.Google Scholar
  15. 15.
    A. Malaspina. Regularization for integral equations of the first kind in the theory of thermoelastic pseudo-oscillations. Appl. Math. Inform.9 (2004), 29–51.MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. Malaspina. On the traction problem in mechanics. Arch. Mech.57 (2005), no. 6, 479–491.MathSciNetzbMATHGoogle Scholar
  17. 17.
    S.G. Mikhlin, S. Prössdorf. Singular Integral Operators. Springer-Verlag: Berlin, 1986.CrossRefGoogle Scholar
  18. 18.
    N.I. Muskhelishvili. Singular integral equations. Boundary problems of functions theory and their applications to mathematical physics. Revised translation from the Russian, edited by J. R. M. Radok. Reprinted. Wolters-Noordhoff Publishing, Groningen, 1972.Google Scholar
  19. 19.
    A. Nachman. Reconstructions from boundary measurements. Ann. of Math. (2) 128 (1988), no. 3, 531–576.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alberto Cialdea
    • 1
  • Vita Leonessa
    • 1
  • Angelica Malaspina
    • 1
    Email author
  1. 1.Department of Mathematics, Computer Science and EconomicsUniversity of BasilicataPotenzaItaly

Personalised recommendations