The Gabor Wave Front Set of Compactly Supported Distributions

  • Patrik WahlbergEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We show that the Gabor wave front set of a compactly supported distribution equals zero times the projection on the second variable of the classical wave front set.


Gabor wave front set Compactly supported distributions 


  1. 1.
    M. Cappiello. Wave front set at infinity for tempered ultradistributions and hyperbolic equations. Ann. Univ. Ferrara52 (2) (2006), 247–270.MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Carypis and P. Wahlberg. Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl.23 (3) (2017), 530–571.MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Coriasco and L. Maniccia. Wave front set at infinity and hyperbolic linear operators with multiple characteristics. Ann. Global Anal. Geom.24 (2003), 375–400.MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Coriasco, K. Johansson, and J. Toft. Global wave-front sets of Banach, Fréchet and modulation space types, and pseudo-differential operators. J. Differential Equations254 (8) (2013), 3228–3258.MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, 1989.CrossRefGoogle Scholar
  6. 6.
    K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, Boston, 2001.CrossRefGoogle Scholar
  7. 7.
    L. Hörmander. The Analysis of Linear Partial Differential Operators, Vol. I, III. Springer, Berlin, 1990.zbMATHGoogle Scholar
  8. 8.
    L. Hörmander. Quadratic hyperbolic operators. Microlocal Analysis and Applications, LNM vol. 1495, L. Cattabriga, L. Rodino (Eds.), pp. 118–160, 1991.Google Scholar
  9. 9.
    L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z.219 (3) (1995), 413–449.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Leray. Lagrangian Analysis and Quantum Mechanics: A Mathematical Structure Related to Asymptotic Expansions and the Maslov Index. The MIT Press, 1981.zbMATHGoogle Scholar
  11. 11.
    N. Lerner. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Birkhäuser, Basel, 2010.Google Scholar
  12. 12.
    R. Melrose. Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge (1995).zbMATHGoogle Scholar
  13. 13.
    F. Nicola and L. Rodino. Global Pseudo-Differential Calculus on Euclidean Spaces. Birkhäuser, Basel, 2010.Google Scholar
  14. 14.
    L. Rodino and P. Wahlberg. The Gabor wave front set. Monaths. Math.173 (4) (2014), 625–655.MathSciNetCrossRefGoogle Scholar
  15. 15.
    K. Pravda–Starov, L. Rodino and P. Wahlberg. Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians. Math. Nachr.291 (1) (2018), 128–159.Google Scholar
  16. 16.
    M. A. Shubin. Pseudodifferential Operators and Spectral Theory. Springer, 2001.CrossRefGoogle Scholar
  17. 17.
    P. Wahlberg. Propagation of polynomial phase space singularities for Schrödinger equations with quadratic Hamiltonians. Mathematica Scandinavica122 (2018), 107–140.MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Weinstein. A symbol class for some Schrödinger equations on R n. Amer. J. Math.107 (1) (1985), 1–21.MathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Yosida. Functional Analysis. Classics in Mathematics, Springer-Verlag, Berlin Heidelberg, 1995.Google Scholar
  20. 20.
    S. Zelditch. Reconstruction of singularities for solutions of Schrödinger’s equation. Commun. Math. Phys.90 (1983), 1–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsLinnæus UniversityVäxjöSweden

Personalised recommendations