Extended Gevrey Regularity via the Short-Time Fourier Transform

  • Nenad TeofanovEmail author
  • Filip Tomić
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We study the regularity of smooth functions whose derivatives are dominated by sequences of the form \(M_p^{\tau ,\sigma }=p^{\tau p^{\sigma }}\), τ > 0, σ ≥ 1. We show that such functions can be characterized through the decay properties of their short-time Fourier transforms (STFT), and recover (Cordero et al., Trans. Am. Math. Soc., 367 (2015), 7639–7663; Theorem 3.1) as the special case when τ > 1 and σ = 1, i.e. when the Gevrey type regularity is considered. These estimates lead to a Paley-Wiener type theorem for extended Gevrey classes. In contrast to the related result from Pilipović et al. (Sarajevo Journal of Mathematics, 14 (2) (2018), 251–264; J. Pseudo-Differ. Oper. Appl. (2019)), here we relax the assumption on compact support of the observed functions. Moreover, we introduce the corresponding wave front set, recover it in terms of the STFT, and discuss local regularity in such context.


Gevrey classes Paley-Wiener theorem Modulation spaces Wave front sets Ultradistributions 



This work is supported by MPNTR through Project 174024.


  1. 1.
    A. Abdeljawad, M. Cappiello, J. Toft, Pseudo-differential calculus in anisotropic Gelfand-Shilov setting, Integr. Equ. Oper. Theory, 91 (26) (2019),
  2. 2.
    M. Cappiello, J. Toft, Pseudo-differential operators in a Gelfand-Shilov setting, Math. Nachr., 290 (2017), 738–755MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Cicognani, D. Lorenz, Strictly hyperbolic equations with coefficients low-regular win time and smooth in space, J. Pseudo-Differ. Oper. Appl., 9 (2018), 643–675.MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Chung, S.-Y. Chung, D. Kim, A characterization for Fourier hyperfunctions, Publ. Res. Inst. Math. Sci., 30 (1994), 203–208MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Cordero, S. Pilipović, L. Rodino, N. Teofanov, Localization operators and exponential weights for modulation spaces, Mediterranean Journal of Mathematics, 2 (2005), 381–394MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Cordero, S. Pilipović, L. Rodino, N. Teofanov, Quasianalytic Gelfand-Shilov spaces with application to localization operators, Rocky Mountain Journal of Mathematics, 40 (2010), 1123–1147MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Cordero, F. Nicola, L. Rodino, Gabor representations of evolution operators, Trans. Am. Math. Soc., 367 (2015), 7639–7663.MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the Lambert W function, Adv. Comput. Math., 5 (1996), 329–359.MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Technical Report, University Vienna, 1983. and also in M. Krishna, R. Radha, S. Thangavelu (eds.), Wavelets and Their Applications, Allied Publishers, 99–140 (2003)Google Scholar
  10. 10.
    H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal., 86 (1989), 307–340MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions II, Monatsh. f. Math. 108 (1989), 129–148MathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Friedlander, M. Joshi, The Theory of Distributions, Cambridge University Press, Cambridge, 1998.Google Scholar
  13. 13.
    I.M. Gelfand, G.E. Shilov, Generalized Functions II, Academic Press, New York, 1968.Google Scholar
  14. 14.
    K. Gröchenig, Foundations of Time-frequency analysis, Birkhäuser, Boston, 2001.CrossRefGoogle Scholar
  15. 15.
    K. Gröchenig, Weight functions in time-frequency analysis, in: L. Rodino, B.-W., Schulze, M. W. Wong (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Institute Comm., 52 (2007), 343–366Google Scholar
  16. 16.
    K. Gröchenig, G. Zimmermann, Hardy’s theorem and the short-time Fourier transform of Schwartz functions, J. London Math. Soc., 63 (2001), 205–214MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Hoorfar, M. Hassani, Inequalities on the Lambert W function and hyperpower function, J. Inequalities in Pure and Applied Math., 9 (2008), 5pp.Google Scholar
  18. 18.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. I: Distribution Theory and Fourier Analysis, Springer-Verlag, 1983.Google Scholar
  19. 19.
    H. Komatsu, Ultradistributions, I: Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), 25–105Google Scholar
  20. 20.
    F. Nicola, L. Rodino, Global Pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications 4, Birkhäuser Verlag, 2010.Google Scholar
  21. 21.
    S. Pilipović, B. Prangoski, On the characterizations of wave front sets via short-time Fourier transform, Math. Notes, 105 (1–2) (2019), 153–157MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Pilipović, N. Teofanov, Wilson bases and ultra-modulation spaces, Math. Nachr., 242 (2002), 179–196MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Pilipović, N. Teofanov, and F. Tomić, On a class of ultradifferentiable functions, Novi Sad Journal of Mathematics, 45 (2015), 125–142.MathSciNetzbMATHGoogle Scholar
  24. 24.
    S. Pilipović, N. Teofanov, F. Tomić, Beyond Gevrey regularity, J. Pseudo-Differ. Oper. Appl., 7 (2016), 113–140.MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Pilipović, N. Teofanov, and F. Tomić, Superposition and propagation of singularities for extended Gevrey regularity, Filomat, 32 (2018), 2763–2782.MathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Pilipović, N. Teofanov, and F. Tomić, Regularities for a new class of spaces between distributions and ultradistributions, Sarajevo Journal of Mathematics, 14 (2) (2018), 251–264.MathSciNetzbMATHGoogle Scholar
  27. 27.
    S. Pilipović, N. Teofanov, and F. Tomić, A Paley-Wiener theorem in extended Gevrey regularity, J. Pseudo-Differ. Oper. Appl. (2019),
  28. 28.
    A. Rainer, G. Schindl, Composition in ultradifferentiable classes, Studia Math, 224 (2) (2014), 97–131.MathSciNetCrossRefGoogle Scholar
  29. 29.
    L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, 1993.CrossRefGoogle Scholar
  30. 30.
    M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, second edition (2001)CrossRefGoogle Scholar
  31. 31.
    N. Teofanov, Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process, 5 (2006), 225–242MathSciNetzbMATHGoogle Scholar
  32. 32.
    N. Teofanov, Gelfand-Shilov spaces and localization operators, Funct. Anal. Approx. Comput. 7 (2015), 135–158MathSciNetzbMATHGoogle Scholar
  33. 33.
    N. Teofanov, F. Tomić, Inverse closedness and singular support in extended Gevrey regularity, J. Pseudo-Differ. Oper. Appl., 8 (3) (2017), 411–421.MathSciNetCrossRefGoogle Scholar
  34. 34.
    N. Teofanov, F. Tomić, Ultradifferentiable functions of class \(M^{\tau ,\sigma } _p\) and microlocal regularity, in: Oberguggenberger M., Toft J., Vindas J., Wahlberg P. (eds) Generalized Functions and Fourier Analysis. Operator Theory: Advances and Applications, vol 260. Birkhuser, Cham (2017), 193–213.Google Scholar
  35. 35.
    J. Toft, The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3 (2012), 145–227MathSciNetCrossRefGoogle Scholar
  36. 36.
    J. Toft, Images of function and distribution spaces under the Bargmann transform, J. Pseudo-Differ. Oper. Appl. 8 (2017), 83–139MathSciNetCrossRefGoogle Scholar
  37. 37.
    F. Tomić, A microlocal property of PDOs in \(\mathcal {E}_{(\tau ,\sigma )}(U)\), in The Second Conference on Mathematics in Engineering: Theory and Applications, Novi Sad, (2017), 7–12.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and Informatics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department of Fundamental Sciences, Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations