Advertisement

Quantization and Coorbit Spaces for Nilpotent Groups

  • M. MăntoiuEmail author
Chapter
  • 58 Downloads
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

We reconsider the quantization of symbols defined on the product between a nilpotent Lie algebra and its dual. To keep track of the non-commutative group background, the Lie algebra is endowed with the Baker-Campbell-Hausdorff product, making it via the exponential diffeomorphism a copy of its unique connected simply connected nilpotent Lie group. Using harmonic analysis tools, we emphasize the role of a Weyl system, of the associated Fourier-Wigner transformation and, at the level of symbols, of an important family of exponential functions. Such notions also serve to introduce a family of phase-space shifts. These are used to define and briefly study a new class of coorbit spaces of symbols and its relationship with coorbit spaces of vectors, defined via the Fourier-Wigner transform.

Keywords

Nilpotent lie group Pseudo-differential operator Coorbit space 

Notes

Acknowledgements

The author has been supported by the Fondecyt Project 1160359.

He is grateful for having the opportunity to participate in the Conference MicroLocal and Time Frequency Analysis 2018 in honor of Luigi Rodino on the occasion of his 70th Birthday.

References

  1. 1.
    L. J. Corwin and F. P. Greenleaf: Representations of Nilpotent Lie Groups and Applications, Cambridge Univ. Press, 1990.zbMATHGoogle Scholar
  2. 2.
    M. Christ, D. Geller, P. Glowacki, D. Polin, Pseudodifferential Operators on Groups with Dilations, Duke Math. J., 68, 31–65, (1992).MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Cordero, K. Gröchenig, F. Nicola and L. Rodino: Wiener Algebras of Fourier Integral Operators, J. Math. Pures Appl., 99, 219–233, (2013).MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Cordero, F. Nicola and L. Rodino: Time-Frequency Analysis of Fourier Integral Operators, Comm. Pure Appl. Anal., 9(1), 1–21, (2010).MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Cordero and L. Rodino: Time-Frequency Analysis: Function Spaces and Applications, Note di Matematica, 31, 173–189, (2011).MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. Cordero, J. Toft and P. Wahlberg: Sharp Results for the Weyl Product on Modulation Spaces, J. Funct. Anal., 267(8), 3016–3057, (2014).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. S. Dynin: An Algebra of Pseudodifferential Operators on the Heisenberg Group: Symbolic Calculus, Dokl. Akad. Nauk SSSR, 227, 508–512, (1976).MathSciNetzbMATHGoogle Scholar
  8. 8.
    H. G. Feichtinger: On a New Segal Algebra, Monatsh. Mat. 92(4), 269–289, (1981).MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. G. Feichtinger: Modulation Spaces on Locally Compact Abelian Groups, Proc. of “International Conference on Wavelets and Applications”, Chenai, India, 99–140, 1983.Google Scholar
  10. 10.
    H. G. Feichtinger and K. Gröchenig: Banch Spaces Associated to Integrable Group Representations and Their Atomic Decompositions I, J. Funct. Anal. 86, 307–340, (1989).MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. Fischer and M. Ruzhansky: A Pseudo-differential Calculus on Graded Nilpotent Groups, in Fourier Analysis, pp. 107–132, Trends in Mathematics, Birkhäuser, 2014.Google Scholar
  12. 12.
    V. Fischer and M. Ruzhansky: Quantization on Nilpotent Lie Groups, Progress in Mathematics, 314, Birkhäuser, 2016.Google Scholar
  13. 13.
    V. Fischer, D. Rottensteiner and M. Ruzhansky: Heisenberg-Modulation Spaces at the Crossroads of Coorbit Theory and Decomposition SpaceTheory, Preprint ArXiV.Google Scholar
  14. 14.
    P. Głowacki: A Symbolic Calculus andL 2-Boundedness on Nilpotent Lie Groups, J. Funct. Anal. 206, 233–251, (2004).Google Scholar
  15. 15.
    P. Głowacki: The Melin Calculus for General Homogeneous Groups, Ark. Mat., 45(1), 31–48, (2007).MathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Głowacki: Invertibility of Convolution Operators on Homogeneous Groups, Rev. Mat. Iberoam. 28(1), 141–156, (2012).MathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Gröchenig: Foundations of Time-Frequency Analysis, Birkhäuser Boston Inc., Boston, MA, 2001.CrossRefGoogle Scholar
  18. 18.
    K. Gröchenig: Time-Frequency Analysis of Sjöstrand Class, Revista Mat. Iberoam. 22(2), 703–724, (2006).MathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Gröchenig: Composition and Spectral Invariance of Pseudodifferential Operators on Modulation Spaces, J. Anal. Math. 98, 65–82, (2006).MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Gröchenig: A Pedestrian Approach to Pseudodifferential Operators, In: C. Heil editor, Harmonic Analysis and Applications, Birkhäuser, Boston, 2006.zbMATHGoogle Scholar
  21. 21.
    K. Gröchenig and C. Heil: Modulation Spaces and Pseudodifferential Operators, Integral Equations Operator Theory, 34, 439–457, (1999).MathSciNetCrossRefGoogle Scholar
  22. 22.
    K. Gröchenig and Z. Rzeszotnik: Banach Algebras of Pseudodifferential Operators and Their Almost Diagonalization, Ann. Inst. Fourier. 58(6), 2279–2314, (2008).MathSciNetCrossRefGoogle Scholar
  23. 23.
    K. Gröchenig and T. Strohmer: Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand’s Symbol Class, J. Reine Angew. Math. 613, 121–146, (2007).MathSciNetzbMATHGoogle Scholar
  24. 24.
    A. Holst, J. Toft and P. Wahlberg: Weyl Product Algebras and Modulation Spaces, J. Funct. Anal. 251, 463–491, (2007).MathSciNetCrossRefGoogle Scholar
  25. 25.
    R. Howe: Quantum Mechanics and Partial Differential Operators, J. Funct. Anal. 38, 188–254, (1980).CrossRefGoogle Scholar
  26. 26.
    R. Howe: The Role of the Heisenberg Group in Harmonic Analysis, Bull. Amer. Math. Soc. 3(2), 821–843, (1980).MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Manchon: Formule de Weyl pour les groupes de Lie nilpotente, J. Reine Angew. Mat. 418, 77–129, (1991).zbMATHGoogle Scholar
  28. 28.
    D. Manchon: Calcul symbolyque sur les groupes de Lie nilpotentes et applications, J. Funct. Anal. 102 (2), 206–251, (1991).MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Măntoiu: Coorbit Spaces of Symbols for Square Integrable Families of Operators, Math. Reports, 18(1), 63–83 (2016).MathSciNetzbMATHGoogle Scholar
  30. 30.
    M. Măntoiu: Berezin-Type Operators on the Cotangent Bundle of a Nilpotent Group, submitted.Google Scholar
  31. 31.
    M. Măntoiu and R. Purice: On Fréchet-Hilbert Algebras, Archiv der Math. 103(2), 157–166, (2014).MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Măntoiu and M. Ruzhansky: Pseudo-differential Operators, Wigner Transform and Weyl Systems on Type I Locally Compact Groups, Doc. Math., 22 , 1539–1592, (2017).MathSciNetzbMATHGoogle Scholar
  33. 33.
    M. Măntoiu and M. Ruzhansky: Quantizations on Nilpotent Lie Groups and Algebras Having Flat Coadjoint Orbits, J. Geometric Analysis, (2019).Google Scholar
  34. 34.
    A. Melin: Parametrix Constructions for Right Invariant Differential Operators on Nilpotent Groups, Ann. Global Anal. Geom. 1(1), 79–130, (1983).MathSciNetCrossRefGoogle Scholar
  35. 35.
    K. Miller: Invariant Pseudodifferential Operators on Two Step Nilpotent Lie Groups, Michigan Math. J. 29, 315–328, (1982).MathSciNetCrossRefGoogle Scholar
  36. 36.
    K. Miller: Inverses and Parametrices for Right-Invariant Pseudodifferential Operators on Two-Step Nilpotent Lie Groups, Trans. of the AMS, 280 (2), 721–736, (1983).MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Ruzhansky and V. Turunen: Pseudodifferential Operators and Symmetries, Pseudo-Differential Operators: Theory and Applications 2, Birkhäuser Verlag, 2010.CrossRefGoogle Scholar
  38. 38.
    J. Sjöstrand: An Algebra of Pseudodifferential Operators, Math. Res. Lett. 1(2), 185–192, (1994).MathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Toft: Continuity Properties for Modulation Spaces, with Applications to Pseudo-differential Calculus. I, J. Funct. Anal. 207(2), 399–426, (2004).MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Toft: Continuity Properties for Modulation Spaces, with Applications to Pseudo-differential Calculus. II, Annals of Global Analysis and Geometry, 26, 73–106, (2004).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations