Carleman Regularization and Hyperfunctions

  • Otto LiessEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Carleman regularization is a method to give a meaning to Fourier-type integrals which are highly divergent in a classical sense. We use it to give a local representation of hyperfunctions in terms of such integrals. While such representations are not unique, uniqueness can be achieved in terms of Dolbeault type cohomology with coefficients in L2 spaces with weights.


Carleman regularization Hyperfunctions Fourier transform 


  1. 1.
    Björk,J.E.: Rings of differential operators, North-Holland Mathematical Library, vol:21, North-Holland Publishing Co., Amsterdam-New York,Google Scholar
  2. 2.
    Carleman,T., L’intégrale de Fourier et questions qui s’y rattachent. Lecons Professéss à l’Insitut Mittag Leffler, Almqvist Wiksells Boktryckeri, 1944, 119 pp.Google Scholar
  3. 3.
    Ehrenpreis,L.: Fourier Analysis in several complex variables. Wiley-Interscience, New York, 1970. pp.xiii+506.Google Scholar
  4. 4.
    Hansen,S.: Localizable analytically uniform spaces and the fundamental principle. Trans. Amer. Math. Soc. 264 (1981), 235–250.Google Scholar
  5. 5.
    Hörmander,L.: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., vol.24 (1971), 671–704.Google Scholar
  6. 6.
    Hörmander,L.: Fourier integral .Hörmander, Lars. Fourier integral operators. I. Acta Math. 127 (1971), no. 1–2, 79–183.Google Scholar
  7. 7.
    Hörmander,L.: An introduction to complex analysis in several variables. North-Holland Publ. Comp., Amsterdam-London, 3-rd revised printing, 1990.Google Scholar
  8. 8.
    Kaneko,A.: Fundamental principle and extension of solutions of partial differential equations with constant coefficients. Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Vol. 287. pp. 122–134.Google Scholar
  9. 9.
    Kaneko,A.: Introduction to hyperfunctions, Mathematics and its Applications (Japanese Series) Mathematics and its Applications (Japanese Series), vol. 3,1988, pp. xiv+458.Google Scholar
  10. 10.
    Kato,G. and Struppa,D.C.: Fundamentals of algebraic microlocal analysis. Monographs and Textbooks in Pure and Applied Mathematics, vo. 217, Marcel Dekker, Inc., New York, 1999, xii+296 pp.Google Scholar
  11. 11.
    Kiselman,C.O.: Generalized Fourier transformations: the work of Bochner and Carleman viewed in the light of the theories of Schwartz and Sato, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp 166–185.Google Scholar
  12. 12.
    Martineau,A.: Distributions et valeurs au bord des fonctions holomorphes. Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964), Inst. Gulbenkian Ci., Lisbon, 1964, pp. 193–326.Google Scholar
  13. 13.
    Palamodov,V.P.: Linear differential operators with constant coefficients. (Russian), Moscow, 1967, English version by Springer-Verlag, Grundlehren der Math. Wissenschaften, vol.168. (1970).Google Scholar
  14. 14.
    Sato,M.: Hyperfunctions and differential equations. Proc. Intern. Conf. on Functional Analysis, Tokyo, 1969, Univ. Tokyo Press,1970.Google Scholar
  15. 15.
    Sato,M.: Regularity of hyperfunctions solutions of partial differential equations, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris 1971,pp 785–794.Google Scholar
  16. 16.
    Tillmann, H.G.: Distributionen als Randverteilungen analytischer Funktionen. II. Math. Z. 76 (1961) 5–21.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BolognaBolognaItaly

Personalised recommendations