Advertisement

Integrating Gauge Fields in the ζ-Formulation of Feynman’s Path Integral

  • Tobias HartungEmail author
  • Karl Jansen
Chapter
  • 58 Downloads
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In recent work by the authors, a connection between Feynman’s path integral and Fourier integral operator ζ-functions has been established as a means of regularizing the vacuum expectation values in quantum field theories. However, most explicit examples using this regularization technique to date, do not consider gauge fields in detail. Here, we address this gap by looking at some well-known physical examples of quantum fields from the Fourier integral operator ζ-function point of view.

Keywords

ζ-Regularization Feynman path integral Gauge fields 

References

  1. 1.
    C. G. Beneventano and E. M. Santangelo. Effective action for QED4 through ζ-function regularization. J. Math. Phys.42 (2001), 3260–3269.MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. K. Blau, M. Visser, and A. Wipf. Analytic results for the effective action. Int. J. Mod. Phys.A6 (1991), 5409–5433.MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Bordag, E. Elizalde, and K. Kirsten. Heat kernel coefficients of the Laplace operator on the D-dimensional ball. J. Math. Phys.37, 895 (1996).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini. Analytic Aspects of Quantum Fields. World Scientific Publishing (2003).Google Scholar
  5. 5.
    L. Culumovic, M. Leblanc, R. B. Mann, D. G. C. McKeon, and T. N. Sherry. Operator regularization and multiloop Green’s functions. Phys. Rev. D41 (1990), 514CrossRefGoogle Scholar
  6. 6.
    J. S. Dowker and R. Critchley. Effective Lagrangian and energy-momentum tensor in de Sitter space. Phys. Rev. D13 (1976), 3224.CrossRefGoogle Scholar
  7. 7.
    E. Elizalde. Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime. J. Phys. A34 (2001), 3025–3035.MathSciNetCrossRefGoogle Scholar
  8. 8.
    E. Elizalde. Ten Physical Applications of Spectral Zeta Functions. 2nd Ed., Lecture Notes in Physics, vol 855, Springer (2012).Google Scholar
  9. 9.
    E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini. Zeta Regularization Techniques With Applications. World Scientific Publishing (1994).Google Scholar
  10. 10.
    E. Elizalde, L. Vanzo, and S. Zerbini. Zeta-Function Regularization, the Multiplicative Anomaly and the Wodzicki Residue. Commun. Math. Phys.194 (1998), 613–630.MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Fermi and L. Pizzocchero. Local Zeta Regularization And The Scalar Casimir Effect. World Scientific Publishing (2017)Google Scholar
  12. 12.
    R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys.20 (1948), 367–387.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. P. Feynman, A. R. Hibbs and D. F. Styer. Quantum Mechanics and Path Integrals. Dover Publications, Inc., Emended Edition, Mineola, NY, 2005.Google Scholar
  14. 14.
    T.-P. Hack and V. Moretti. On the stress-energy tensor of quantum fields in curved spacetimes-comparison of different regularization schemes and symmetry of the Hadamard/Seeley-DeWitt coefficients. J. Phys. A: Math. Theor.45 (2012), 374019.MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Hartung. ζ-functions of Fourier Integral Operators. Ph.D. thesis, King’s College London, London, 2015.Google Scholar
  16. 16.
    T. Hartung. Regularizing Feynman Path Integrals using the generalized Kontsevich-Vishik trace. J. Math. Phys.58 (2017), 123505.MathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Hartung. Feynman path integral regularization using Fourier Integral Operator ζ-functions. In: A. Böttcher, D. Potts, P. Stollmann, D. Wenzel (eds) The Diversity and Beauty of Applied Operator Theory. Operator Theory: Advances and Applications, vol 268. Birkhäuser (2018), 261–289Google Scholar
  18. 18.
    T. Hartung and K. Jansen. Zeta-regularized vacuum expectation values. J. Math. Phys. 60 (2019), 093504.MathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Hartung and S. Scott. A generalized Kontsevich-Vishik trace for Fourier Integral Operators and the Laurent expansion of ζ-functions. (2015) arXiv:1510.07324.Google Scholar
  20. 20.
    S. W. Hawking. Zeta Function Regularization of Path Integrals in Curved Spacetime. Communications in Mathematical Physics55 (1977), 133–148.MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Iso and H. Murayama. Hamiltonian Formulation of the Schwinger Model. Progr. Theor. Phys.84 (1990), 142–163.CrossRefGoogle Scholar
  22. 22.
    K. Jansen and T. Hartung. Zeta-regularized vacuum expectation values from quantum computing simulations (2019) arXiv:1912.01276.Google Scholar
  23. 23.
    M. Kontsevich and S. Vishik. Determinants of elliptic pseudo-differential operators. Max Planck Preprint, arXiv:hep-th/9404046 (1994).Google Scholar
  24. 24.
    M. Kontsevich and S. Vishik. Geometry of determinants of elliptic operators. Functional Analysis on the Eve of the XXI century, Vol. I, Progress in Mathematics131 (1994), 173–197.MathSciNetzbMATHGoogle Scholar
  25. 25.
    M. Marcolli and A. Connes. From physics to number theory via noncommutative geometry. Part II: Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory. In: P. E. Cartier, B. Julia, P. Moussa, P. Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry: On Random Matrices, Zeta Functions, and Dynamical Systems, Springer (2006).Google Scholar
  26. 26.
    D. G. C. McKeon and T. N. Sherry. Operator regularization and one-loop Green’s functions. Phys. Rev. D35 (1987), 3854MathSciNetCrossRefGoogle Scholar
  27. 27.
    V. Moretti. Direct ζ-function approach and renormalization of one-loop stress tensor in curved spacetimes. Phys. Rev. D56 (1997), 7797.MathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Moretti. One-loop stress-tensor renormalization in curved background: the relation between ζ-function and point-splitting approaches, and an improved point-splitting procedure. J. Math. Phys.40 (1999), 3843.MathSciNetCrossRefGoogle Scholar
  29. 29.
    V. Moretti. A review on recent results of the ζ-function regularization procedure in curved spacetime. In: D. Fortunato, M. Francaviglia, A. Masiello (eds) Recent developments in General Relativity, Springer (2000)Google Scholar
  30. 30.
    V. Moretti. Local ζ-functions, stress-energy tensor, field fluctuations, and all that, in curved static spacetime. Springer Proc. Phys.137 (2011), 323–332MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer (1992).Google Scholar
  32. 32.
    M. J. Radzikowski. The Hadamard condition and Kay’s conjecture in (axiomatic) quantum field theory on curved space-time. Ph.D. thesis, Princeton University (1992).Google Scholar
  33. 33.
    M. J. Radzikowski. Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Communications in Mathematical Physics179 (1996), 529–553.MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. B. Ray. Reidemeister torsion and the Laplacian on lens spaces. Advances in Mathematics4 (1970), 109–126.MathSciNetCrossRefGoogle Scholar
  35. 35.
    D. B. Ray and I. M. Singer. R-torsion and the Laplacian on Riemannian manifolds Advances in Mathematics7 (1971), 145–210.Google Scholar
  36. 36.
    N. M. Robles. Zeta Function Regularization. Ph.D. thesis, Imperial College London (2009).Google Scholar
  37. 37.
    A. Y. Shiekh. Zeta Function Regularization of Quantum Field Theory. Can. J. Phys.68 (1990), 620–629.MathSciNetCrossRefGoogle Scholar
  38. 38.
    R. F. Streater and A. S. Wightman. PCT, Spin and Statistics and All That. Princeton University Press, (2000)Google Scholar
  39. 39.
    D. Tong. Quantum Field Theory. University of Cambridge Part III Mathematical Tripos, lecture notes, 2006, http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf.
  40. 40.
    D. Tong. String Theory. University of Cambridge Part III Mathematical Tripos, lecture notes, 2009, http://www.damtp.cam.ac.uk/user/tong/string/string.pdf.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonUK
  2. 2.NIC, DESY ZeuthenZeuthenGermany

Personalised recommendations