Advertisement

Small Data Solutions for Semilinear Waves with Time-Dependent Damping and Mass Terms

  • Giovanni GirardiEmail author
Chapter
  • 57 Downloads
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

We consider the following Cauchy problem for a wave equation with time-dependent damping term b(t)ut and mass term m(t)2u, and a time-dependent non-linearity h = h(t, u):
$$\displaystyle \begin {cases} u_{tt}-\Delta u+b(t)u_t+m^2(t)u=h(t,u), & t\geq 0, \ x\in \mathbb R^n,\\ u(0,x)=f(x), \quad u_t(0,x)=g(x). \end {cases} $$
Here, we consider an effective time-dependent damping term and a time-dependent mass term, in the case in which the mass is dominated by the damping term, i.e. m(t) = o(b(t)) as t →. Under suitable assumptions on the non-linearity h = h(t, u) (Hypothesis 1.3), we prove the global existence of small data solutions in a supercritical range \(p>\bar p\), assuming small data in the energy space (f, g) ∈ H1 × L2.

Keywords

Critical exponent Effective damping Damped Klein-Gordon equation 

References

  1. 1.
    M. D’Abbicco, Small data solutions for semilinear wave equations with effective damping, Discrete and Continuous Dynamical Systems, Supplement 2013, 183–191.Google Scholar
  2. 2.
    M. D’Abbicco, The Threshold of Effective Damping for Semilinear Wave Equations, Mathematical Methods in Appl. Sci., 38 (2015), no. 6, 1032–1045, http://dx.doi.org/10.1002/mma.3126 MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. D’Abbicco, S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Studies, 13 (2013), 867–892.MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. D’Abbicco, S. Lucente, NLWE with a special scale-invariant damping in odd space dimension, Discr. Cont. Dynamical Systems, AIMS Proceedings, 2015, 312–319, http://dx.doi.org/10.3934/proc.2015.0312.
  5. 5.
    M. D’Abbicco, G. Girardi, M. Reissig: A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Analysis, 179, 15–40 (2019), https://doi.org/10.1016/j.na.2018.08.006.MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. D’Abbicco, S. Lucente, M. Reissig, Semilinear wave equations with effective damping, Chinese Ann. Math., 34B (2013), no. 3, 345–380, http://dx.doi.org/10.1007/s11401-013-0773-0;CrossRefGoogle Scholar
  7. 7.
    M. D’Abbicco, S. Lucente, M. Reissig, A shift in the critical exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 2015, 5040–5073, http://dx.doi.org/10.1016/j.jde.2015.06.018.MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Girardi, Semilinear damped Klein-Gordon models with time-dependent coefficients, New Tools for Nonlinear PDEs and Application, 2019, 203–216, https://doi.org/10.1007/978-3-030-10937-0_7
  9. 9.
    M. Ikeda, M. Sobajima, Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data, Mathematische Annalen, 372 (2018), no. 3, 1017–1040.MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Ikehata, Y. Mayaoka, T. Nakatake, Decay estimates of solutions for dissipative wave equations in \(\mathbb {R}^N\)with lower power nonlinearities, J. Math. Soc. Japan, 56 (2004), no. 2, 365–373.Google Scholar
  11. 11.
    R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in \(\mathbb {R}^N\), J. Math. Anal. Appl., 269 (2002), 87–97.Google Scholar
  12. 12.
    T.T. Li, Y. Zhou, Breakdown of solutions to \(\square u+u_t = |u|{ }^{1+\alpha }\), Discrete and Continuous Dynamical Systems 1 (1995), 503–520.Google Scholar
  13. 13.
    N.A. Lai, H. Takamura, K. Wakasa, Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent, J. Differential Equations, 263 (2017), 5377–5394.MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete and Continuous Dynamical Systems, 32 (2012), no. 12, 4307–4320, http://dx.doi.org/10.3934/dcds.2012.32.4307.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. RIMS. 12 (1976), 169–189.MathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Nishihara, Asymptotic Behavior of Solutions to the Semilinear Wave Equation with Time-dependent Damping, Tokyo J. Math., 34 (2011), 327–343.MathSciNetCrossRefGoogle Scholar
  17. 17.
    W. N. do Nascimento, A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation, Math. Nachr. 290 (2017), 1779–1805.Google Scholar
  18. 18.
    G. Todorova, B. Yordanov, Critical Exponent for a Nonlinear Wave Equation with Damping, J. Differential Equations, 174 (2001), 464–489.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452–487.MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation, J. Differential Equations, 232 (2007), 74–103.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109–114.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of BariBariItaly

Personalised recommendations