Advertisement

Decay Estimates and Gevrey Smoothing for a Strongly Damped Plate Equation

Gevrey Spaces Meet Math Everywhere!
  • Marcello D’AbbiccoEmail author
Chapter
  • 56 Downloads
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this note, we study a damped plate equation. On the one hand, the action of the damping creates a smoothing effect in Gevrey classes, on the other hand, it dissipates the energy of the solution.

Keywords

Damped plate equation Decay estimates Smoothing effect 

References

  1. 1.
    H. Chen, L. Rodino, Micro-elliptic Gevrey regularity for nonlinear partial differential equations, Boll. Un. Mat. Ital. 10-B (1996), 199–232.MathSciNetzbMATHGoogle Scholar
  2. 2.
    H. Chen, L. Rodino, General theory of PDE and Gevrey classes, in: “General theory of PDE and microlocal analysis”, M. Y. Qi and L. Rodino, editors, Pitman Res. Notes Math. Ser. 349 (1996), 6–81.Google Scholar
  3. 3.
    H. Chen, L. Rodino, Nonlinear microlocal analysis and applications in Gevrey classes, in: “Differential Equations, Asymptotic Analysis and Mathematical Physics”, Math. Res., Akademie Verlag 100 (1997), 47–53.Google Scholar
  4. 4.
    M. D’Abbicco, A benefit from theL 1smallness of initial data for the semilinear wave equation with structural damping, in Current Trends in Analysis and its Applications, 2015, 209–216. Proceedings of the 9th ISAAC Congress, Krakow. Eds V. Mityushev and M. Ruzhansky, http://www.springer.com/br/book/9783319125763.
  5. 5.
    M. D’Abbicco, R. Chãrao, C. da Luz, Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient, Discrete and Continuous Dynamical Systems A 36 (2016) 5, 2419–2447, http://dx.doi.org/10.3934/dcds.2016.36.2419
  6. 6.
    M. D’Abbicco, M.R. Ebert, Diffusion phenomena for the wave equation with structural damping in theL p − L qframework, J. Differential Equations, 256 (2014), 2307–2336, http://dx.doi.org/10.1016/j.jde.2014.01.002.Google Scholar
  7. 7.
    M. D’Abbicco, M.R. Ebert, An application ofL p − L qdecay estimates to the semilinear wave equation with parabolic-like structural damping, Nonlinear Analysis 99 (2014), 16–34, http://dx.doi.org/10.1016/j.na.2013.12.021.Google Scholar
  8. 8.
    M. D’Abbicco, M.R. Ebert, A classification of structural dissipations for evolution operators, Math. Meth. Appl. Sci. 39 (2016), 2558–2582, http://dx.doi.org/10.1002/mma.3713.MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. D’Abbicco, M.R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Analysis 149 (2017), 1–40; http://dx.doi.org/10.1016/j.na.2016.10.010.MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. D’Abbicco, G. Girardi, J. Liang, L 1 − L 1estimates for the strongly damped plate equation, Journal of Mathematical Analysis and Applications 478 (2019), 476–498, https://doi.org/10.1016/j.jmaa.2019.05.039 Google Scholar
  11. 11.
    M. D’Abbicco, E. Jannelli, A damping term for higher-order hyperbolic equations, Ann. Mat. Pura ed Appl. 195, 2, 2016, 557–570, http://dx.doi.org/10.1007/s10231-015-0477-z.MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. D’Abbicco, E. Jannelli, Dissipative Higher Order Equations, Communications in Partial Differential Equations, 42 (2017) 11, 1682–1706, http://dx.doi.org/10.1080/03605302.2017.1390674.
  13. 13.
    M. D’Abbicco, M. Reissig, Semilinear structural damped waves, Math. Methods in Appl. Sc., 37 (2014), 1570–1592, http://dx.doi.org/10.1002/mma.2913.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Han Yang, A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. math. 124, 5 (2000) 415–433.MathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Hua, L. Rodino, Paradifferential Calculus in Gevrey Classes, J. Math. Kyoto Univ. (JMKYAZ) 41 (2001), 1–31.MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Ikehata, Asymptotic Profiles for Wave Equations with Strong Damping, J. Differential Equations 257 (2014), 2159–2177, http://dx.doi.org/10.1016/j.jde.2014.05.031.MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Kainane, M. Reissig, Qualitative properties of solution to structurally dampedσ-evolution models with time decreasing coefficient in the dissipation, Complex Analysis and Dynamical Systems VI, Contemporary Mathematics, Amer. Math. Soc., 2015, 191–218Google Scholar
  18. 18.
    M. Kainane, M. Reissig, Qualitative properties of solution to structurally dampedσ-evolution models with time increasing coefficient in the dissipation, Advances in Differential Equations 20 (2015) 5–6, 433–462.MathSciNetzbMATHGoogle Scholar
  19. 19.
    G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Mathematica 143 (2000), 2, 175–197.Google Scholar
  20. 20.
    T. Krauthammer, E. Ventsel. Thin Plates and Shells Theory: Analysis, and Applications. Marcel Dekker, Inc., New York, 2001.Google Scholar
  21. 21.
    P. Marcati, K. Nishihara, TheL p-L qestimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Eq. 191 (2003), 445–469.Google Scholar
  22. 22.
    A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. RIMS. 12 (1976), 169–189.MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Matthes, M. Reissig, Qualitative properties of structurally damped wave models, Eurasian Math. J. 3 (2013) 4, 84–106.Google Scholar
  24. 24.
    T. Narazaki, L p − L qestimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan 56 (2004), 586–626.Google Scholar
  25. 25.
    T. Narazaki, M. Reissig, L 1estimates for oscillating integrals related to structural damped wave models, in Studies in Phase Space Analysis with Applications to PDEs, Cicognani M, Colombini F, Del Santo D (eds), Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, 2013; 215–258.Google Scholar
  26. 26.
    K. Nishihara, L p − L qestimates for solutions to the damped wave equations in 3-dimensional space and their applications, Math. Z. 244 (2003), 631–649.Google Scholar
  27. 27.
    J. C. Peral, L pestimates for the wave equation, Journal of functional analysis, 36 (1980), 114–145.Google Scholar
  28. 28.
    D.T. Pham, M. Kainane, M. Reissig, Global existence for semi-linear structurally dampedσ-evolution models, Journal of Mathematical Analysis and Applications 431 (2015) 1, 569–596.Google Scholar
  29. 29.
    Y. Shibata, On the Rate of Decay of Solutions to Linear Viscoelastic Equation, Math. Meth. Appl. Sci., 23 (2000), 203–226.MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Todorova, B. Yordanov, Critical Exponent for a Nonlinear Wave Equation with Damping, Journal of Differential Equations 174 (2001), 464–489.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BariBariItaly

Personalised recommendations