Background of Diffusion MRI

  • Mohammad ShehabEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 877)


Decoding human brain structures and their interconnecting trajectories are very exciting research areas since they have numerous applications in the clinical diagnosis and management of brain disorders. For that, a lot of variety of invasive tools have been introduced to study brain white matter structural connectivity and configuration. Nevertheless, these tools pose a risk to human life. Therefore, there must be alternatives to avoid this risk.


  1. Abualigah, L. M. Q., & Hanandeh, E. S. (2015). Applying genetic algorithms to information retrieval using vector space model. International Journal of Computer Science, Engineering and Applications, 5(1), 19.Google Scholar
  2. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016a). Multi-objectives-based text clustering technique using k-mean algorithm. In 2016 7th International Conference on Computer Science and Information Technology (CSIT), pp. 1–6. IEEE.Google Scholar
  3. Abualigah, L. M., Khader, A. T., & Al-Betar, M. A. (2016b). Unsupervised feature selection technique based on genetic algorithm for improving the text clustering. In Computer Science and Information Technology (CSIT), 2016 7th International Conference on, pp. 1–6. IEEE.Google Scholar
  4. Abualigah, L. M., Sawaie, A. M., Khader, A. T., Rashaideh, H., Al-Betar, M. A., & Shehab, M. (2017). \(\beta \)-hill climbing technique for the text document clustering. New Trends in Information Technology, 60.Google Scholar
  5. Alexander, D. C. (2005a). Maximum entropy spherical deconvolution for diffusion mri. In Biennial International Conference on Information Processing in Medical Imaging, pp. 76–87. Springer.Google Scholar
  6. Alexander, D. C. (2005b). Multiple-fiber reconstruction algorithms for diffusion mri. Annals of the New York Academy of Sciences, 1064(1), 113–133.CrossRefGoogle Scholar
  7. Anderson, A. W. (2005). Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magnetic Resonance in Medicine, 54(5), 1194–1206.CrossRefGoogle Scholar
  8. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.Google Scholar
  9. Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (dti)-based white matter mapping in brain research: A review. Journal of Molecular Neuroscience, 34(1), 51–61.CrossRefGoogle Scholar
  10. Banerjee, A., Dhillon, I. S., Ghosh, J., & Sra, S. (2005). Clustering on the unit hypersphere using von mises-fisher distributions. Journal of Machine Learning Research, 6(Sep), 1345–1382.Google Scholar
  11. Barmpoutis, A., & Vemuri, B. C. (2009). Information theoretic methods for diffusion-weighted mri analysis. In Emerging Trends in Visual Computing, pp. 327–346. Springer.Google Scholar
  12. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). Mr diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259.Google Scholar
  13. Bastin, M. E., Armitage, P. A., & Marshall, I. (1998). A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magnetic Resonance Imaging, 16(7), 773–785.Google Scholar
  14. Beppu, T., Inoue, T., Shibata, Y., Kurose, A., Arai, H., Ogasawara, K., et al. (2003). Measurement of fractional anisotropy using diffusion tensor mri in supratentorial astrocytic tumors. Journal of Neuro-Oncology, 63(2), 109–116.CrossRefGoogle Scholar
  15. Bergmann, Ø., Kindlmann, G., Lundervold, A., & Westin, C.-F. (2006). Diffusion k-tensor estimation from q-ball imaging using discretized principal axes. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 268–275. Springer.Google Scholar
  16. Berman, J. I., Lanza, M. R., Blaskey, L., Edgar, J. C., & Roberts, T. P. L. (2013). High angular resolution diffusion imaging probabilistic tractography of the auditory radiation. American Journal of Neuroradiology, 34(8), 1573–1578.Google Scholar
  17. Bertschinger, C. E. (2000). Introduction to tensor calculus for general relativity.Google Scholar
  18. Campbell, J. S. W., MomayyezSiahkal, P., Savadjiev, P., Leppert, I. R., Siddiqi, K., & Pike, G. B. (2014). Beyond crossing fibers: bootstrap probabilistic tractography using complex subvoxel fiber geometries. Frontiers in neurology, 5.Google Scholar
  19. Chen, Y., Guo, W., Zeng, Q., Yan, X., Huang, F., Zhang, H., He, G., Vemuri, B. C., & Liu, Y. (2004). Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution dwi. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 1, pp. I–588. IEEE.Google Scholar
  20. Cheng, J., Deriche, R., Jiang, T., Shen, D., & Yap, P.-T. (2014). Non-negative spherical deconvolution (nnsd) for estimation of fiber orientation distribution function in single-/multi-shell diffusion mri. NeuroImage, 101, 750–764.CrossRefGoogle Scholar
  21. Connerney, M. (2014). 3D reconstruction of motor pathways from tract tracing in the rhesus monkey. PhD thesis, school of medicine thesis 3D reconstruction of motor pathways from tract tracing in the rhesus monkey by michael CONNERNEY BA, Boston University.Google Scholar
  22. Deriche, R., Calder, J., & Descoteaux, M. (2009). Optimal real-time q-ball imaging using regularized kalman filtering with incremental orientation sets. Medical Image Analysis, 13(4), 564–579.CrossRefGoogle Scholar
  23. Descoteaux, M., Angelino, E., Fitzgibbons, S., & Deriche, R. (2006). Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magnetic Resonance in Medicine, 56(2), 395–410.CrossRefGoogle Scholar
  24. Descoteaux, M., Angelino, E., Fitzgibbons, S., & Deriche, R. (2007). Regularized, fast, and robust analytical q-ball imaging. Magnetic Resonance in Medicine, 58(3), 497–510.CrossRefGoogle Scholar
  25. Descoteaux, M., Deriche, R., Knösche, T. R., & Anwander, A. (2009a). Deterministic and probabilistic tractography based on complex fibre orientation distributions. Medical Imaging, IEEE Transactions on, 28(2), 269–286.Google Scholar
  26. Drobyshevsky, A., Derrick, M., Wyrwicz, A. M., Ji, X., Englof, I., Ullman, L. M., Zelaya, M. E., Northington, F. J., & Tan, S. (2007). White matter injury correlates with hypertonia in an animal model of cerebral palsy. Journal of Cerebral Blood Flow & Metabolism, 27(2), 270–281.Google Scholar
  27. Einstein, A. (1956). Investigations on the Theory of the Brownian Movement. Courier Corporation.Google Scholar
  28. Fat, M. J. L., Al-Hazzaa, M., Bussière, M., dos Santos, M. P., Lesiuk, H., & Lum, C. (2013). Heparin dosing is associated with diffusion weighted imaging lesion load following aneurysm coiling. Journal of Neurointerventional Surgery, 5(4), 366–370.Google Scholar
  29. Funk, P. (1915). Über eine geometrische anwendung der abelschen integralgleichung. Mathematische Annalen, 77(1), 129–135.MathSciNetCrossRefGoogle Scholar
  30. Ghosh, A., Descoteaux, M., & Deriche, R. (2008a). Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 858–865. Springer.Google Scholar
  31. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.-P., Van Wedeen, J., & Meuli, R. (2006). Understanding diffusion mr imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond 1. Radiographics, 26(suppl\(\_\)1):S205–S223.Google Scholar
  32. Heidi, J.-B., & Behrens, T. E. J. (2013). Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press.Google Scholar
  33. Heisel, K. A., Goto, J. J., Krishnan, V. V., et al. (2012). Nmr chromatography: molecular diffusion in the presence of pulsed field gradients in analytical chemistry applications.Google Scholar
  34. Hess, C. P., Mukherjee, P., Han, E. T., Xu, D., & Vigneron, D. B. (2005). A spherical harmonic approach to q-ball imaging. In Proceedings of the 13th Annual Meeting of ISMRM, p. 389.Google Scholar
  35. Hess, C. P., Mukherjee, P., Han, E. T., Xu, D., & Vigneron, D. B. (2006). Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magnetic Resonance in Medicine, 56(1), 104–117.Google Scholar
  36. Jansons, K. M., & Alexander, D. C. (2003). Persistent angular structure: new insights from diffusion magnetic resonance imaging data. Inverse problems, 19(5), 1031.Google Scholar
  37. Jellison, B. J., Field, A. S., Medow, J., Lazar, M., Salamat, M. S., & Alexander, A. L. (2004a). Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. American Journal of Neuroradiology, 25(3), 356–369.Google Scholar
  38. Jellison, B. J., Field, A. S., Medow, J., Lazar, M., Salamat, M. S., & Alexander, A. L. (2004b). Diffusion tensor imaging of cerebral white matter: A pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. American Journal of Neuroradiology, 25(3), 356–369.Google Scholar
  39. Jian, B., & Vemuri, B. C. (2007). A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted mri. IEEE transactions on medical imaging, 26(11), 1464–1471.Google Scholar
  40. Juneja, V. (2012). Novel phantoms and post-processing for diffusion spectrum imaging.Google Scholar
  41. Kaden, E., Anwander, A., & Knösche, T. R. (2008). Variational inference of the fiber orientation density using diffusion mr imaging. Neuroimage, 42(4), 1366–1380.Google Scholar
  42. Kaden, E., Knösche, R.T., & Anwander, A. (2007). Parametric spherical deconvolution: inferring anatomical connectivity using diffusion mr imaging. NeuroImage, 37(2), 474–488.Google Scholar
  43. Kleinnijenhuis, M. (2014). Imaging fibres in the brain, volume 159. Michiel Kleinnijenhuis.Google Scholar
  44. Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion mri. Nature Reviews Neuroscience, 4(6), 469–480.CrossRefGoogle Scholar
  45. Liu, C., Bammer, R., Acar, B., & Moseley, M. E. (2004). Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magnetic Resonance in Medicine, 51(5), 924–937.Google Scholar
  46. McGraw, R., Vemuri, B. C., Yezierski, B., & Mareci, T. (2006). Von mises-fisher mixture model of the diffusion odf. In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, pp. 65–68. IEEE.Google Scholar
  47. Nichols, T. E., & Holmes, A. P. (2004). Nonparametric permutation tests for functional neuroimaging. Human Brain Function, 2, 887–910.Google Scholar
  48. Ning, L., Westin, C.-F., & Rathi, Y. (2015). Estimating diffusion propagator and its moments using directional radial basis functions. IEEE Transactions on Medical Imaging, 34(10), 2058–2078.CrossRefGoogle Scholar
  49. Ogawa, S., Lee, T.-M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 87(24), 9868–9872.Google Scholar
  50. Parker, G. J. M., & Alexander, D. C. (2003). Probabilistic monte carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In Biennial International Conference on Information Processing in Medical Imaging, pp. 684–695. Springer.Google Scholar
  51. Parker, G. D., Marshall, D., Rosin, P. L., Drage, N., Richmond, S., & Jones, D. K. (2013). A pitfall in the reconstruction of fibre odfs using spherical deconvolution of diffusion mri data. Neuroimage, 65, 433–448.Google Scholar
  52. Peled, S., Friman, O., Jolesz, F., & Westin, C.-F. (2006). Geometrically constrained two-tensor model for crossing tracts in dwi. Magnetic Resonance Imaging, 24(9), 1263–1270.CrossRefGoogle Scholar
  53. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Chiro, G. D. (1996). Diffusion tensor mr imaging of the human brain. Radiology, 201(3), 637–648.Google Scholar
  54. Pierre Maréchal. Duality for maximum entropy diffusion mri. In AIP Conference Proceedings, volume 1641, pages 205–212. AIP, 2015.Google Scholar
  55. Qi, L., Gaohang, Y., & Yi, X. (2013). Nonnegative diffusion orientation distribution function. Journal of Mathematical Imaging and Vision, 45(2), 103–113.MathSciNetCrossRefGoogle Scholar
  56. Roine, T., Jeurissen, B., Perrone, D., Aelterman, J., Philips, W., Leemans, A., et al. (2015). Informed constrained spherical deconvolution (icsd). Medical Image Analysis, 24(1), 269–281.CrossRefGoogle Scholar
  57. Rosenbloom, M., Sullivan, E. V., Pfefferbaum, A., et al. (2003). Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics. Alcohol Research and Health, 27(2), 146–152.Google Scholar
  58. Savadjiev, P., Campbell, J. S. W., Pike, G. B., & Siddiqi, K. (2006). 3d curve inference for diffusion mri regularization and fibre tractography. Medical image analysis, 10(5), 799–813.Google Scholar
  59. Shehab, M., Khader, A. T., & Al-Betar, M. A. (2016). New selection schemes for particle swarm optimization. IEEJ Transactions on Electronics, Information and Systems, 136(12), 1706–1711. Scholar
  60. Shehab, M., Khader, A. T., & Al-Betar, M. A. (2017a). A survey on applications and variants of the cuckoo search algorithm. Applied Soft Computing.Google Scholar
  61. Shehab, M., Khader, A. T., Al-Betar, M. A., & Abualigah, L. M. (2017b) Hybridizing cuckoo search algorithm with hill climbing for numerical optimization problems. In Information Technology (ICIT), 2017 8th International Conference on, pp. 36–43. IEEE.Google Scholar
  62. Shehab, M., Khader, A. T., & Laouchedi, M. (2017c). Modified cuckoo search algorithm for solving global optimization problems. In International Conference of Reliable Information and Communication Technology, pp. 561–570. Springer.Google Scholar
  63. Shehab, M., Khader, A. T., & Laouchedi, M. (2018a). A hybrid method based on cuckoo search algorithm for global optimization problems. Journal of ICT, 17(3), 469–491.Google Scholar
  64. Shehab, M., Khader, A. T., Laouchedi, M., & Alomari, O. A. (2018b). Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization. The Journal of Supercomputing, pp. 1–28.Google Scholar
  65. Shehab, M., Daoud, M. Sh., AlMimi, H. M., Abualigah, L. M., & Khader, A. T. (2019a). Hybridizing cuckoo search algorithm for extracting the odf maxima in spherical harmonic representation. International Journal of Bio-Inspired Computation, (in press).Google Scholar
  66. Shehab, M., Khader, A. T., & Alia., M. A. (2019b). Enhancing cuckoo search algorithm by using reinforcement learning for constrained engineering optimization problems. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 812–816. IEEE.Google Scholar
  67. Sotiropoulos, S. N., & Zalesky, A. (2017). Building connectomes using diffusion mri: Why, how and but. NMR in Biomedicine.Google Scholar
  68. Stejskal, E. O., & Tanner, J. E. (1965). Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics, 42(1), 288–292.Google Scholar
  69. Stratton, J. A. (2007). Electromagnetic theory. Wiley.Google Scholar
  70. Tan, Ek. T., Marinelli, L., Sperl, J. I., Menzel, M. I., & Hardy, C. J. (2015). Multi-directional anisotropy from diffusion orientation distribution functions. Journal of Magnetic Resonance Imaging, 41(3), 841–850.Google Scholar
  71. Topgaard, D. (2017). Multidimensional diffusion mri. Journal of Magnetic Resonance, 275, 98–113.CrossRefGoogle Scholar
  72. Tournier, J.-D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4), 1459–1472.Google Scholar
  73. Tournier, J.-D., Yeh, C.-H., Calamante, F., Cho, K.-H., Connelly, A., & Lin, C.-P. (2008). Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. Neuroimage, 42(2), 617–625.Google Scholar
  74. Tristán-Vega, A., Westin, C.-F., & Aja-Fernández, S. (2009). Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage, 47(2), 638–650.CrossRefGoogle Scholar
  75. Tuch, D. S. (2004b). Q-ball imaging. Magnetic Resonance in Medicine, 52(6), 1358–1372.CrossRefGoogle Scholar
  76. Tuch, D. S., Reese, T. G., Wiegell, M. R., & Van Wedeen, J. (2003). Diffusion mri of complex neural architecture. Neuron, 40(5), 885–895.Google Scholar
  77. Wedeen, V. J., Reese, T. G., Tuch, D. S., Weigel, M. R., Dou, J. G., Weiskoff, R. M., & Chessler, D. (2000). Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion mri. In Proceedings of the 8th Annual Meeting of ISMRM, Denver, p. 82.Google Scholar
  78. Wedeen, J. Van, Hagmann, P., Tseng, W.-Y. I., Reese, T. G., & Weisskoff, R. M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic resonance in medicine, 54(6), 1377–1386.Google Scholar
  79. Yeh, F.-C., & Tseng, W.-Y. (2013). Sparse solution of fiber orientation distribution function by diffusion decomposition. PloS One, 8(10), e75747.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer Science\Artificial Intelligence DepartmentAqaba University of TechnologyAqabaJordan

Personalised recommendations