Advertisement

Ancillary Studies Applied to Renal Masses

  • Luiz Paulo de Lima Guido
  • Fiona Hanly
  • Britney Escobedo
  • Andre Pinto
  • Merce JordaEmail author
Chapter
  • 33 Downloads

Abstract

Renal cell carcinoma (RCC) and, in general, kidney tumors are a cluster of histopathological and molecular heterogeneous lesions, with different sets of genetic and epigenetic abnormalities, as well as clinical behavior and therapeutic response. Therefore, ancillary testing must be used wisely and appropriately for the main differential diagnoses in an individualized fashion. Having said that, the landscape of the immunohistochemical studies with a description of common markers and patterns, as well as main clusters of tumors, is essential to better understand these neoplasms in order to reach the correct diagnosis. Immunohistochemistry (IHC) is a valuable tool for proper diagnostic, prognostic, and predictive evaluation, since treatment is often decided based on tumor type. Although histologic assessment and IHC remain the foundation of renal biopsy interpretation, cytogenetic and molecular characterizations of renal neoplasms have been increasingly employed in the clinical setting to help improve histologic classification and guide management decisions when histology and immunohistochemistry profiles do not provide a clear diagnosis. This chapter’s aim is to discuss practical utilization of ancillary testing, describing best immunohistochemistry usage and exploring cytogenetic and molecular advances in this field.

Keywords

Ancillary testing Genetics Renal tumors Kidney biopsy Immunohistochemistry 

References

  1. 1.
    Reuter VE, Argani P, Zhou M, Delahunt B. Best practices recommendations in the application of immunohistochemistry in the kidney tumors: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014;38(8):e35–49.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Herrera GA, Turbat-Herrera EA. Ancillary diagnostic techniques in the evaluation of adult epithelial renal neoplasms: indications, caveats, and pitfalls. Appl Immunohistochem Mol Morphol. 2014;22(2):77–98.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kuroda N, Tanaka A, Ohe C, Nagashima Y. Recent advances of immunohistochemistry for diagnosis of renal tumors. Pathol Int. 2013;63(8):381–90.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ozcan A, de la Roza G, Ro JY, Shen SS, Truong LD. PAX2 and PAX8 expression in primary and metastatic renal tumors: a comprehensive comparison. Arch Pathol Lab Med. 2012;136(12):1541–51.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ordonez NG. Value of PAX2 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol. 2012;19(6):401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tickoo SK, Chen YB, Zynger DL. Biopsy interpretation of the kidney and adrenal gland. Philadelphia: Wolters Kluwer; 2015.Google Scholar
  7. 7.
    Bing Z, Lal P, Lu S, Ziober A, Tomaszewski JE. Role of carbonic anhydrase IX, alpha-methylacyl coenzyme a racemase, cytokeratin 7, and galectin-3 in the evaluation of renal neoplasms: a tissue microarray immunohistochemical study. Ann Diagn Pathol. 2013;17(1):58–62.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rohan SM, Xiao Y, Liang Y, Dudas ME, Al-Ahmadie HA, Fine SW, et al. Clear-cell papillary renal cell carcinoma: molecular and immunohistochemical analysis with emphasis on the von Hippel-Lindau gene and hypoxia-inducible factor pathway-related proteins. Mod Pathol. 2011;24(9):1207–20.  https://doi.org/10.1038/modpathol.2011.80.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Williamson SR, Eble JN, Cheng L, Grignon DJ. Clear cell papillary renal cell carcinoma: differential diagnosis and extended immunohistochemical profile. Mod Pathol. 2013;26(5):697–708.  https://doi.org/10.1038/modpathol.2012.204.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Skinnider BF, Folpe AL, Hennigar RA, Lim SD, Cohen C, Tamboli P, et al. Distribution of cytokeratins and vimentin in adult renal neoplasms and normal renal tissue: potential utility of a cytokeratin antibody panel in the differential diagnosis of renal tumors. Am J Surg Pathol. 2005;29(6):747–54.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Al-Ahmadie HA, Alden D, Qin LX, Olgac S, Fine SW, Gopalan A, et al. Carbonic anhydrase IX expression in clear cell renal cell carcinoma: an immunohistochemical study comparing 2 antibodies. Am J Surg Pathol. 2008 Mar;32(3):377–82.  https://doi.org/10.1097/PAS.0b013e3181570343.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhou M, Roma A, Magi-Galluzzi C. The usefulness of immunohistochemical markers in the differential diagnosis of renal neoplasms. Clin Lab Med. 2005;25(2):247–57.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Turner AJ, Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 1997;11(5):355–64.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Avery AK, Beckstead J, Renshaw AA, Corless CL. Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol. 2000;24(2):203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tan PH, Cheng L, Rioux-Leclercq N, Merino MJ, Netto G, Reuter VE, et al. ISUP renal tumor panel. Renal tumors: diagnostic and prognostic biomarkers. Am J Surg Pathol. 2013;37(10):1518–31.  https://doi.org/10.1097/PAS.0b013e318299f12e.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Delahunt B, Egevad L, Montironi R, Srigley JR. International Society of Urological Pathology (ISUP) consensus conference on renal neoplasia: rationale and organization. Am J Surg Pathol. 2013;37(10):1463–8.  https://doi.org/10.1097/PAS.0b013e318299f14a.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs-Part A: renal, penile, and testicular tumours. Eur Urol. 2016;70(1):93–105.  https://doi.org/10.1016/j.eururo.2016.02.029.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kuehn A, Paner GP, Skinnider BF, Cohen C, Datta MW, Young AN, et al. Expression analysis of kidney-specific cadherin in a wide spectrum of traditional and newly recognized renal epithelial neoplasms: diagnostic and histogenetic implications. Am J Surg Pathol. 2007;31(10):1528–33.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, et al. ISUP renal tumor panel. The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am J Surg Pathol. 2013;37(10):1469–89.  https://doi.org/10.1097/PAS.0b013e318299f2d1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Karafin M, Parwani AV, Netto GJ, Illei PB, Epstein JI, Ladanyi M, Argani P. Diffuse expression of PAX2 and PAX8 in the cystic epithelium of mixed epithelial stromal tumor, angiomyolipoma with epithelial cysts, and primary renal synovial sarcoma: evidence supporting renal tubular differentiation. Am J Surg Pathol. 2011;35(9):1264–73.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tickoo SK, Alden D, Olgac S, Fine SW, Russo P, Kondagunta GV, et al. Immunohistochemical expression of hypoxia inducible factor-1alpha and its downstream molecules in sarcomatoid renal cell carcinoma. J Urol. 2007;177(4):1258–63.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Leroy X, Zini L, Buob D, Ballereau C, Villers A, Aubert S. Renal cell carcinoma with rhabdoid features: an aggressive neoplasm with overexpression of p53. Arch Pathol Lab Med. 2007;131(1):102–6.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang XJ, Zhou M, Hes O, Shen S, Li R, Lopez J, et al. Tubulocystic carcinoma of the kidney: clinicopathologic and molecular characterization. Am J Surg Pathol. 2008;32(2):177–87.  https://doi.org/10.1097/PAS.0b013e318150df1d.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim HJ, Shen SS, Ayala AG, Ro JY, Truong LD, Alvarez K, et al. Virtual-karyotyping with SNP microarrays in morphologically challenging renal cell neoplasms: a practical and useful diagnostic modality. Am J Surg Pathol. 2009;33(9):1276–86.  https://doi.org/10.1097/PAS.0b013e3181a2aa36.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yap NY, Rajandram R, Ng KL, Pailoor J, Fadzli A, Gobe GC. Genetic and chromosomal aberrations and their clinical significance in renal neoplasms. Biomed Res Int. 2015;2015:476508.  https://doi.org/10.1155/2015/476508.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol. 2018;244(5):525–37.  https://doi.org/10.1002/path.5022.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Molina AM, Motzer RJ. Clinical practice guidelines for the treatment of metastatic renal cell carcinoma: today and tomorrow. Oncologist. 2011;16(Suppl 2):45–50.  https://doi.org/10.1634/theoncologist.2011-S2-45.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31.  https://doi.org/10.1038/nbt.2696.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Inamura K. Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci. 2017;18(10):pii: E2195.  https://doi.org/10.3390/ijms18102195.CrossRefGoogle Scholar
  30. 30.
    Hsieh JJ, Manley BJ, Khan N, Gao J, Carlo MI, Cheng EH. Overcome tumor heterogeneity-imposed therapeutic barriers through convergent genomic biomarker discovery: a braided cancer river model of kidney cancer. Semin Cell Dev Biol. 2017;64:98–106.  https://doi.org/10.1016/j.semcdb.2016.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.  https://doi.org/10.1038/nrdp.2017.9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33.  https://doi.org/10.1038/ng.2891.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gulati S, Martinez P, Joshi T, Birkbak NJ, Santos CR, Rowan AJ, et al. Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur Urol. 2014;66(5):936–48.  https://doi.org/10.1016/j.eururo.2014.06.053.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sanfrancesco JM, Cheng L. Complexity of the genomic landscape of renal cell carcinoma: implications for targeted therapy and precision immuno-oncology. Crit Rev Oncol Hematol. 2017;119:23–8.  https://doi.org/10.1016/j.critrevonc.2017.09.011.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med. 2016;22(1):105–13.  https://doi.org/10.1038/nm.3984.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. TRACERx consortium; PEACE consortium. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–51.  https://doi.org/10.1038/nature22364.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.  https://doi.org/10.1038/nrc.2017.7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Morris MR, Latif F. The epigenetic landscape of renal cancer. Nat Rev Nephrol. 2017;13(1):47–60.  https://doi.org/10.1038/nrneph.2016.168.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–11.  https://doi.org/10.1093/nar/gku1075.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.  https://doi.org/10.1038/nature12222.CrossRefGoogle Scholar
  41. 41.
    Gebauer K, Peters I, Dubrowinskaja N, Hennenlotter J, Abbas M, Scherer R, et al. Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer. 2013;108(1):131–8.  https://doi.org/10.1038/bjc.2012.537.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Du M, Lu D, Wang Q, Chu H, Tong N, Pan X, et al. Genetic variations in microRNAs and the risk and survival of renal cell cancer. Carcinogenesis. 2014;35(7):1629–35.  https://doi.org/10.1093/carcin/bgu082.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wu MK, Sabbaghian N, Xu B, Addidou-Kalucki S, Bernard C, Zou D, et al. Biallelic DICER1 mutations occur in Wilms tumours. J Pathol. 2013;230(2):154–64.  https://doi.org/10.1002/path.4196.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016;29(1):104–16.  https://doi.org/10.1016/j.ccell.2015.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Richard S, Gardie B, Couvé S, Gad S. Von Hippel-Lindau: how a rare disease illuminates cancer biology. Semin Cancer Biol. 2013;23(1):26–37.  https://doi.org/10.1016/j.semcancer.2012.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Friedrich CA. Von Hippel-Lindau syndrome. A pleomorphic condition. Cancer. 1999;86(11 Suppl):2478–82.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22(24):4991–5004.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bodmer D, Eleveld MJ, Ligtenberg MJ, Weterman MA, Janssen BA, Smeets DF, et al. An alternative route for multistep tumorigenesis in a novel case of hereditary renal cell cancer and a t(2;3)(q35;q21) chromosome translocation. Am J Hum Genet. 1998;62(6):1475–83.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Moch H, Schraml P, Bubendorf L, Richter J, Gasser TC, Mihatsch MJ, Sauter G. Intratumoral heterogeneity of von Hippel-Lindau gene deletions in renal cell carcinoma detected by fluorescence in situ hybridization. Cancer Res. 1998;58(11):2304–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Martinez A, Fullwood P, Kondo K, Kishida T, Yao M, Maher ER, Latif F. Role of chromosome 3p12–p21 tumour suppressor genes in clear cell renal cell carcinoma: analysis of VHL dependent and VHL independent pathways of tumorigenesis. Mol Pathol. 2000;53(3):137–44.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sükösd F, Kuroda N, Beothe T, Kaur AP, Kovacs G. Deletion of chromosome 3p14.2-p25 involving the VHL and FHIT genes in conventional renal cell carcinoma. Cancer Res. 2003;63(2):455–7.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Singh RB, Amare Kadam PS. Investigation of tumor suppressor genes apart from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC). Urol Oncol. 2013;31(7):1333–42.  https://doi.org/10.1016/j.urolonc.2011.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shridhar V, Wang L, Rosati R, Paradee W, Shridhar R, Mullins C, et al. Frequent breakpoints in the region surrounding FRA3B in sporadic renal cell carcinomas. Oncogene. 1997;14(11):1269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Karras JR, Paisie CA, Huebner K. Replicative stress and the FHIT gene: roles in tumor suppression, genome stability and prevention of carcinogenesis. Cancers (Basel). 2014;6(2):1208–19.  https://doi.org/10.3390/cancers6021208.CrossRefGoogle Scholar
  56. 56.
    Ramp U, Caliskan E, Ebert T, Karagiannidis C, Willers R, Gabbert HE, Gerharz CD. FHIT expression in clear cell renal carcinomas: versatility of protein levels and correlation with survival. J Pathol. 2002;196(4):430–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Eyzaguirre EJ, Miettinen M, Norris BA, Gatalica Z. Different immunohistochemical patterns of Fhit protein expression in renal neoplasms. Mod Pathol. 1999;12(10):979–83.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.  https://doi.org/10.1038/nature09639.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gossage L, Murtaza M, Slatter AF, Lichtenstein CP, Warren A, Haynes B, et al. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer. 2014;53(1):38–51.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kapur P, Peña-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 2013;14(2):159–67.  https://doi.org/10.1016/S1470-2045(12)70584-3.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nagao K, Yoshihiro S, Matsuyama H, Yamaguchi S, Oba K, Naito K. Clinical significance of allelic loss of chromosome region 5q22.3 approximately q23.2 in nonpapillary renal cell carcinoma. Cancer Genet Cytogenet. 2002;136(1):23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Nagao K, Yamaguchi S, Matsuyama H, Korenaga Y, Hirata H, Yoshihiro S, et al. Allelic loss of 3p25 associated with alterations of 5q22.3∼q23.2 may affect the prognosis of conventional renal cell carcinoma. Cancer Genet Cytogenet. 2005;160(1):43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gunawan B, Huber W, Holtrup M, von Heydebreck A, Efferth T, Poustka A, et al. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res. 2001;61(21):7731–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Presti JC Jr, Wilhelm M, Reuter V, Russo P, Motzer R, Waldman F. Allelic loss on chromosomes 8 and 9 correlates with clinical outcome in locally advanced clear cell carcinoma of the kidney. J Urol. 2002;167(3):1464–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schullerus D, Herbers J, Chudek J, Kanamaru H, Kovacs G. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas. J Pathol. 1997;183(2):151–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Brunelli M, Eble JN, Zhang S, Martignoni G, Cheng L. Gains of chromosomes 7, 17, 12, 16, and 20 and loss of Y occur early in the evolution of papillary renal cell neoplasia: a fluorescent in situ hybridization study. Mod Pathol. 2003;16(10):1053–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Balint I, Szponar A, Jauch A, Kovacs G. Trisomy 7 and 17 mark papillary renal cell tumours irrespectively of variation of the phenotype. J Clin Pathol. 2009;62(10):892–5.  https://doi.org/10.1136/jcp.2009.066423.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Amare Kadam PS, Varghese C, Bharde SH, Narasimhamoorthy NK, Desai S, Advani SH, et al. Proliferating cell nuclear antigen and epidermal growth factor receptor (EGFr) status in renal cell carcinoma patients with polysomy of chromosome 7. Cancer Genet Cytogenet. 2001;125(2):139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pailoor J, Rajandram R, Yap NY, Ng KL, Wang Z, Iyengar KR. Chromosome 7 aneuploidy in clear cell and papillary renal cell carcinoma: detection using silver in situ hybridization technique. Indian J Pathol Microbiol. 2013;56(2):98–102.  https://doi.org/10.4103/0377-4929.118688.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Klatte T, Pantuck AJ, Said JW, Seligson DB, Rao NP, LaRochelle JC, et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res. 2009;15(4):1162–9.  https://doi.org/10.1158/1078-0432.CCR-08-1229.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fischer J, Palmedo G, von Knobloch R, Bugert P, Prayer-Galetti T, Pagano F, Kovacs G. Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene. 1998;17(6):733–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet. 1998;20(1):66–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Salvi A, Marchina E, Benetti A, Grigolato P, De Petro G, Barlati S. Germline and somatic c-met mutations in multifocal/bilateral and sporadic papillary renal carcinomas of selected patients. Int J Oncol. 2008;33(2):271–6.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lubensky IA, Schmidt L, Zhuang Z, Weirich G, Pack S, Zambrano N, et al. Hereditary and sporadic papillary renal carcinomas with c-met mutations share a distinct morphological phenotype. Am J Pathol. 1999;155(2):517–26.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–S19.  https://doi.org/10.1177/1758834011422556.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sweeney P, El-Naggar AK, Lin SH, Pisters LL. Biological significance of c-met over expression in papillary renal cell carcinoma. J Urol. 2002;168(1):51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73(1):95–106.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Smit DL, Mensenkamp AR, Badeloe S, Breuning MH, Simon ME, van Spaendonck KY, et al. Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin Genet. 2011;79(1):49–59.  https://doi.org/10.1111/j.1399-0004.2010.01486.x.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gardie B, Remenieras A, Kattygnarath D, Bombled J, Lefèvre S, Perrier-Trudova V, et al. French National Cancer Institute “Inherited predisposition to kidney cancer” network. Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J Med Genet. 2011;48(4):226–34.  https://doi.org/10.1136/jmg.2010.085068.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8(2):143–53.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kiuru M, Lehtonen R, Arola J, Salovaara R, Järvinen H, Aittomäki K, et al. Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res. 2002;62(16):4554–7.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Brunelli M, Gobbo S, Cossu-Rocca P, Cheng L, Hes O, Delahunt B, et al. Chromosomal gains in the sarcomatoid transformation of chromophobe renal cell carcinoma. Mod Pathol. 2007;20(3):303–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kovacs G, Fuzesi L, Emanual A, Kung HF. Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer. 1991;3(4):249–55.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kovac M, Navas C, Horswell S, Salm M, Bardella C, Rowan A, et al. Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution. Nat Commun. 2015;6:6336.  https://doi.org/10.1038/ncomms7336.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–91.  https://doi.org/10.1101/gad.225680.113.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Schmidt LS, Nickerson ML, Warren MB, Glenn GM, Toro JR, Merino MJ, et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dube syndrome. Am J Hum Genet. 2005;76(6):1023–33.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. 2002;2(2):157–64.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Warren MB, Torres-Cabala CA, Turner ML, Merino MJ, Matrosova VY, Nickerson ML, et al. Expression of Birt-Hogg-Dube gene mRNA in normal and neoplastic human tissues. Mod Pathol. 2004;17(8):998–1011.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Vocke CD, Yang Y, Pavlovich CP, Schmidt LS, Nickerson ML, Torres-Cabala CA, et al. High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dube-associated renal tumors. J Natl Cancer Inst. 2005;97(12):931–5.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Chen J, Futami K, Petillo D, Peng J, Wang P, Knol J, et al. Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS One. 2008;3(10):e3581.  https://doi.org/10.1371/journal.pone.0003581.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Baba M, Furihata M, Hong SB, Tessarollo L, Haines DC, Southon E, et al. Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst. 2008;100(2):140–54.  https://doi.org/10.1093/jnci/djm288.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26(3):319–30.  https://doi.org/10.1016/j.ccr.2014.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Brunelli M, Delahunt B, Gobbo S, Tardanico R, Eccher A, Bersani S, et al. Diagnostic usefulness of fluorescent cytogenetics in differentiating chromophobe renal cell carcinoma from renal oncocytoma: a validation study combining metaphase and interphase analyses. Am J Clin Pathol. 2010;133(1):116–26.  https://doi.org/10.1309/AJCPSATJTKBI6J4N.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009;9:152.  https://doi.org/10.1186/1471-2407-9-152.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Tan MH, Wong CF, Tan HL, Yang XJ, Ditlev J, Matsuda D, et al. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma. BMC Cancer. 2010;10:196.  https://doi.org/10.1186/1471-2407-10-196.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Jones TD, Eble JN, Wang M, Maclennan GT, Jain S, Cheng L. Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer. 2005;104(6):1195–203.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Manley BJ, Hsieh JJ. Sarcomatoid renal cell carcinoma: genomic insights from sequencing of matched sarcomatous and carcinomatous components. Transl Cancer Res. 2016;5(Suppl 2):S160–5.  https://doi.org/10.21037/tcr.2016.07.30.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bi M, Zhao S, Said JW, Merino MJ, Adeniran AJ, Xie Z, et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc Natl Acad Sci U S A. 2016;113(8):2170–5.  https://doi.org/10.1073/pnas.1525735113.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Malouf GG, Ali SM, Wang K, Balasubramanian S, Ross JS, Miller VA, et al. Genomic characterization of renal cell carcinoma with sarcomatoid dedifferentiation pinpoints recurrent genomic alterations. Eur Urol. 2016;70(2):348–57.  https://doi.org/10.1016/j.eururo.2016.01.051.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Zisman A, Chao DH, Pantuck AJ, Kim HJ, Wieder JA, Figlin RA, et al. Unclassified renal cell carcinoma: clinical features and prognostic impact of a new histological subtype. J Urol. 2002;168(3):950–5.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Crispen PL, Tabidian MR, Allmer C, Lohse CM, Breau RH, Blute ML, et al. Unclassified renal cell carcinoma: impact on survival following nephrectomy. Urology. 2010;76(3):580–6.  https://doi.org/10.1016/j.urology.2009.12.037.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Pal SK, Choueiri TK, Wang K, Khaira D, Karam JA, Van Allen E, et al. Characterization of clinical cases of collecting duct carcinoma of the kidney assessed by comprehensive genomic profiling. Eur Urol. 2016;70(3):516–21.  https://doi.org/10.1016/j.eururo.2015.06.019.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lopez-Beltran A, Cheng L, Raspollini MR, Montironi R. SMARCB1/INI1 genetic alterations in renal medullary carcinomas. Eur Urol. 2016;69(6):1062–4.  https://doi.org/10.1016/j.eururo.2016.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Calderaro J, Masliah-Planchon J, Richer W, Maillot L, Maille P, Mansuy L, et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. Eur Urol. 2016;69(6):1055–61.  https://doi.org/10.1016/j.eururo.2015.09.027.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Carlo MI, Chaim J, Patil S, Kemel Y, Schram AM, Woo K, et al. Genomic characterization of renal medullary carcinoma and treatment outcomes. Clin Genitourin Cancer. 2017;15(6):e987–94.  https://doi.org/10.1016/j.clgc.2017.04.012.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kauffman EC, Ricketts CJ, Rais-Bahrami S, Yang Y, Merino MJ, Bottaro DP, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol. 2014;11(8):465–75.  https://doi.org/10.1038/nrurol.2014.162.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Malouf GG, Su X, Yao H, Gao J, Xiong L, He Q, et al. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin Cancer Res. 2014;20(15):4129–40.  https://doi.org/10.1158/1078-0432.CCR-13-3036.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Szponar A, Yusenko MV, Kovacs G. High-resolution array CGH of metanephric adenomas: lack of DNA copy number changes. Histopathology. 2010;56(2):212–6.  https://doi.org/10.1111/j.1365-2559.2009.03473.x.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Pan CC, Epstein JI. Detection of chromosome copy number alterations in metanephric adenomas by array comparative genomic hybridization. Mod Pathol. 2010;23(12):1634–40.  https://doi.org/10.1038/modpathol.2010.162.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Brunelli M, Eble JN, Zhang S, Martignoni G, Cheng L. Metanephric adenoma lacks the gains of chromosomes 7 and 17 and loss of Y that are typical of papillary renal cell carcinoma and papillary adenoma. Mod Pathol. 2003;16(10):1060–3.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Stumm M, Koch A, Wieacker PF, Phillip C, Steinbach F, Allhoff EP, et al. Partial monosomy 2p as the single chromosomal anomaly in a case of renal metanephric adenoma. Cancer Genet Cytogenet. 1999;115(1):82–5.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Dadone B, Ambrosetti D, Carpentier X, Duranton-Tanneur V, Burel-Vandenbos F, Amiel J, Pedeutour F. A renal metanephric adenoma showing both a 2p16e24 deletion and BRAF V600E mutation: a synergistic role for a tumor suppressor gene on chromosome 2p and BRAF activation? Cancer Genet. 2013;206(9-10):347–52.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Choueiri TK, Cheville J, Palescandolo E, Fay AP, Kantoff PW, Atkins MB, et al. BRAF mutations in metanephric adenoma of the kidney. Eur Urol. 2012;62(5):917–22.  https://doi.org/10.1016/j.eururo.2012.05.051.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gattenlöhner S, Etschmann B, Riedmiller H, Müller-Hermelink HK. Lack of KRAS and BRAF mutation in renal cell carcinoma. Eur Urol. 2009;55(6):1490–1.  https://doi.org/10.1016/j.eururo.2009.02.024.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Nagy A, Zoubakov D, Stupar Z, Kovacs G. Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma. Int J Cancer. 2004;109(3):472–5.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Jhang JS, Narayan G, Murty VV, Mansukhani MM. Renal oncocytomas with 11q13 rearrangements: cytogenetic, molecular, and immunohistochemical analysis of cyclin D1. Cancer Genet Cytogenet. 2004;149(2):114–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Sukov WR, Ketterling RP, Lager DJ, Carlson AW, Sinnwell JP, Chow GK, et al. CCND1 rearrangements and cyclin D1 overexpression in renal oncocytomas: frequency, clinicopathologic features, and utility in differentiation from chromophobe renal cell carcinoma. Hum Pathol. 2009;40(9):1296–303.  https://doi.org/10.1016/j.humpath.2009.01.016.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Zanssen S, Gunawan B, Fuzesi L, Warburton D, Schon EA. Renal oncocytomas with rearrangements involving 11q13 contain breakpoints near CCND1. Cancer Genet Cytogenet. 2004;149(2):120–4.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Williamson SR, Halat S, Eble JN, Grignon DJ, Lopez-Beltran A, Montironi R, et al. Multilocular cystic renal cell carcinoma: similarities and differences in immunoprofile compared with clear cell renal cell carcinoma. Am J Surg Pathol. 2012;36(10):1425–33.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Halat S, Eble JN, Grignon DJ, Lopez-Beltran A, Montironi R, Tan P-H, et al. Multilocular cystic renal cell carcinoma is a subtype of clear cell renal cell carcinoma. Mod Pathol. 2010;23:931.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    von Teichman A, Compérat E, Behnke S, Storz M, Moch H, Schraml P. VHL mutations and dysregulation of pVHL- and PTEN-controlled pathways in multilocular cystic renal cell carcinoma. Mod Pathol. 2011;24(4):571–8.  https://doi.org/10.1038/modpathol.2010.222.CrossRefGoogle Scholar
  122. 122.
    Inamura K. Translocation renal cell carcinoma: an update on clinicopathological and molecular features. Cancers (Basel). 2017;9(9):pii: E111.  https://doi.org/10.3390/cancers9090111.CrossRefGoogle Scholar
  123. 123.
    Argani P, Yonescu R, Morsberger L, Morris K, Netto GJ, Smith N, et al. Molecular confirmation of t(6;11)(p21;q12) renal cell carcinoma in archival paraffin-embedded material using a break-apart TFEB FISH assay expands its clinicopathologic spectrum. Am J Surg Pathol. 2012;36(10):1516–26.  https://doi.org/10.1097/PAS.0b013e3182613d8f.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Inamura K, Fujiwara M, Togashi Y, Nomura K, Mukai H, Fujii Y, et al. Diverse fusion patterns and heterogeneous clinicopathologic features of renal cell carcinoma with t(6;11) translocation. Am J Surg Pathol. 2012;36(1):35–42.  https://doi.org/10.1097/PAS.0b013e3182293ec3.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27(6):750–61.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Rao Q, Williamson SR, Zhang S, Eble JN, Grignon DJ, Wang M, et al. TFE3 break-apart FISH has a higher sensitivity for Xp11.2 translocation-associated renal cell carcinoma compared with TFE3 or cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol. 2013;37(6):804–15.  https://doi.org/10.1097/PAS.0b013e31827e17cb.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Green WM, Yonescu R, Morsberger L, Morris K, Netto GJ, Epstein JI, et al. Utilization of a TFE3 break-apart FISH assay in a renal tumor consultation service. Am J Surg Pathol. 2013;37(8):1150–63.  https://doi.org/10.1097/PAS.0b013e31828a69ae.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Lee HJ, Shin DH, Noh GY, Kim YK, Kim A, Shin N, et al. Combination of immunohistochemistry, FISH and RT-PCR shows high incidence of Xp11 translocation RCC: comparison of three different diagnostic methods. Oncotarget. 2017;8(19):30756–65.  https://doi.org/10.18632/oncotarget.16481.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Argani P, Reuter VE, Zhang L, Sung YS, Ning Y, Epstein JI, et al. TFEB-amplified renal cell carcinomas: an aggressive molecular subset demonstrating variable melanocytic marker expression and morphologic heterogeneity. Am J Surg Pathol. 2016;40(11):1484–95.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Aydin H, Chen L, Cheng L, Vaziri S, He H, Ganapathi R, et al. Clear cell tubulopapillary renal cell carcinoma: a study of 36 distinctive low-grade epithelial tumors of the kidney. Am J Surg Pathol. 2010;34(11):1608–21.  https://doi.org/10.1097/PAS.0b013e3181f2ee0b.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Gobbo S, Eble JN, Grignon DJ, Martignoni G, MacLennan GT, Shah RB, et al. Clear cell papillary renal cell carcinoma: a distinct histopathologic and molecular genetic entity. Am J Surg Pathol. 2008;32(8):1239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Adam J, Couturier J, Molinié V, Vieillefond A, Sibony M. Clear-cell papillary renal cell carcinoma: 24 cases of a distinct low-grade renal tumour and a comparative genomic hybridization array study of seven cases. Histopathology. 2011;58(7):1064–71.  https://doi.org/10.1111/j.1365-2559.2011.03857.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Gill AJ. Succinate dehydrogenase (SDH) and mitochondrial driven neoplasia. Pathology. 2012;44(4):285–92.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luiz Paulo de Lima Guido
    • 1
  • Fiona Hanly
    • 1
  • Britney Escobedo
    • 1
  • Andre Pinto
    • 1
  • Merce Jorda
    • 2
    Email author
  1. 1.Department of Pathology & Laboratory MedicineUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Miller School of Medicine, University of Miami Health SystemMiamiUSA

Personalised recommendations