Advertisement

Linear-Size Constant-Query IOPs for Delegating Computation

  • Eli Ben-Sasson
  • Alessandro ChiesaEmail author
  • Lior Goldberg
  • Tom Gur
  • Michael Riabzev
  • Nicholas Spooner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11892)

Abstract

We study the problem of delegating computations via interactive proofs that can be probabilistically checked. Known as interactive oracle proofs (IOPs), these proofs extend probabilistically checkable proofs (PCPs) to multi-round protocols, and have received much attention due to their application to constructing cryptographic proofs (such as succinct non-interactive arguments). The relevant complexity measures for IOPs in this context are prover and verifier time, and query complexity.

We construct highly efficient IOPs for a rich class of nondeterministic algebraic computations, which includes succinct versions of arithmetic circuit satisfiability and rank-one constraint system (R1CS) satisfiability. For a time-T computation, we obtain prover arithmetic complexity \(O(T \log T)\) and verifier complexity polylog(T). These IOPs are the first to simultaneously achieve the state of the art in prover complexity, due to [14], and in verifier complexity, due to [7]. We also improve upon the query complexity of both schemes.

The efficiency of our prover is a result of our highly optimized proof length; in particular, ours is the first construction that simultaneously achieves linear-size proofs and polylogarithmic-time verification, regardless of query complexity.

Keywords

Interactive oracle proofs Probabilistically checkable proofs Delegation of computation 

Notes

Acknowledgments

We thank Michael Forbes for helpful discussions. This work was supported in part by: donations from the Ethereum Foundation and the Interchain Foundation.

References

  1. 1.
    Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Preliminary version in FOCS 1992MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS 1992MathSciNetCrossRefGoogle Scholar
  4. 4.
    Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 421–429 (1985)Google Scholar
  5. 5.
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 21–32 (1991)Google Scholar
  6. 6.
    Ben-Sasson, E., et al.: Computational integrity with a public random string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_19CrossRefGoogle Scholar
  7. 7.
    Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018)Google Scholar
  8. 8.
    Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive oracle proofs of proximity. In: Proceedings of the 45th International Colloquium on Automata, Languages and Programming, ICALP 2018, pp. 14:1–14:17 (2018)Google Scholar
  9. 9.
    Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.: Zero knowledge protocols from succinct constraint detection. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 172–206. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_6CrossRefGoogle Scholar
  10. 10.
    Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs with constant rate and query complexity. In: Proceedings of the 44th International Colloquium on Automata, Languages and Programming, ICALP 2017, pp. 40:1–40:15 (2017)Google Scholar
  11. 11.
    Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowledge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_2CrossRefGoogle Scholar
  12. 12.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to delegatable succinct constraint satisfaction problems. In: Proceedings of the 4th Innovations in Theoretical Computer Science Conference, ITCS 2013, pp. 401–414 (2013)Google Scholar
  13. 13.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of probabilistically-checkable proofs. In: Proceedings of the 45th ACM Symposium on the Theory of Computing, STOC 2013, pp. 585–594 (2013)Google Scholar
  14. 14.
    Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17653-2_4. Full version available at https://eprint.iacr.org/2018/828CrossRefGoogle Scholar
  15. 15.
    Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_2CrossRefGoogle Scholar
  16. 16.
    Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs verifiable in polylogarithmic time. In: Proceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC 2005, pp. 120–134 (2005)Google Scholar
  17. 17.
    Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant rate PCPs for circuit-SAT with sublinear query complexity. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp. 320–329 (2013)Google Scholar
  19. 19.
    Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for the distance to a code. In: Proceedings of the 33rd ACM Conference on Computer and Communications Security, CCS 2018, pp. 24:1–24:23 (2018)Google Scholar
  20. 20.
    Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J. Comput. 38(2), 551–607 (2008). Preliminary version appeared in STOC 2005MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621 (2003)Google Scholar
  22. 22.
    Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1), 269–291 (1995). Preliminary version in STOC 1989CrossRefGoogle Scholar
  23. 23.
    Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_12CrossRefGoogle Scholar
  24. 24.
    Bowe, S., et al.: Implementation track proceeding. Technical report, ZKProof Standards (2018). https://zkproof.org/documents.html
  25. 25.
    Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary version in FOCS 1991MathSciNetCrossRefGoogle Scholar
  27. 27.
    Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length. J. ACM 53, 558–655 (2006). Preliminary version in STOC 2002MathSciNetCrossRefGoogle Scholar
  28. 28.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version appeared in STOC 1985MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989).  https://doi.org/10.1007/3-540-51237-3_10CrossRefGoogle Scholar
  30. 30.
    Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with near-optimal rate. IEEE Trans. Inf. Theory 51(10), 3393–3400 (2005). Preliminary version appeared in STOC 2003MathSciNetCrossRefGoogle Scholar
  31. 31.
    Harsha, P., Sudan, M.: Small PCPs with low query complexity. Comput. Complex. 9(3–4), 157–201 (2000). Preliminary version in STACS 2001MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: limitations, simplifications, and applications (2015). http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
  33. 33.
    Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_44CrossRefGoogle Scholar
  34. 34.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 723–732 (1992)Google Scholar
  35. 35.
    Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  36. 36.
    Lipton, R.J.: New directions in testing. In: Proceedings of a DIMACS Workshop in Distributed Computing and Cryptography, pp. 191–202 (1989)Google Scholar
  37. 37.
    Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000). Preliminary version appeared in FOCS 1994MathSciNetCrossRefGoogle Scholar
  38. 38.
    Mie, T.: Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann. Math. Artif. Intell. 56, 313–338 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 194–203 (1994)Google Scholar
  40. 40.
    Reingold, O., Rothblum, R., Rothblum, G.: Constant-round interactive proofs for delegating computation. In: Proceedings of the 48th ACM Symposium on the Theory of Computing, STOC 2016, pp. 49–62 (2016)Google Scholar
  41. 41.
    Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5(3–4), 207–388 (2010)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inf. Theory 42(6), 1723–1731 (1996). Preliminary version appeared in STOC 1995MathSciNetCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Eli Ben-Sasson
    • 1
  • Alessandro Chiesa
    • 2
    Email author
  • Lior Goldberg
    • 1
  • Tom Gur
    • 3
  • Michael Riabzev
    • 1
  • Nicholas Spooner
    • 2
  1. 1.StarkWareTel AvivIsrael
  2. 2.UC BerkeleyBerkeleyUSA
  3. 3.University of WarwickCoventryUK

Personalised recommendations