Advertisement

Efficient Multi-resource, Multi-unit VCG Auction

  • Liran FunaroEmail author
  • Orna Agmon Ben-YehudaEmail author
  • Assaf SchusterEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11819)

Abstract

We consider the optimization problem of a multi-resource, multi-unit VCG auction that produces an exact, i.e., non-approximated, social welfare. We present an algorithm that solves this optimization problem with pseudo-polynomial complexity and demonstrate its efficiency via our implementation. Our implementation is efficient enough to be deployed in real systems to allocate computing resources in fine time-granularity. Our algorithm has a pseudo-near-linear time complexity on average (over all possible realistic inputs) with respect to the number of clients and the number of possible unit allocations. In the worst case, it is quadratic with respect to the number of possible allocations. Our experiments validate our analysis and show near-linear complexity. This is in contrast to the unbounded, nonpolynomial complexity of known solutions, which do not scale well for a large number of agents.

For a single resource and concave valuations, our algorithm reproduces the results of a well-known algorithm. It does so, however, without subjecting the valuations to any restrictions and supports a multiple resource auction, which improves the social welfare over a combination of single-resource auctions by a factor of 2.5-50. This makes our algorithm applicable to real clients in a real system.

Keywords

VCG MCMK d-MCK MCK Resource allocation Cloud 

Notes

Acknowledgments

We thank Deborah Miller, Sharon Kessler, Hadas Shachnai, Tamar Camus, Ido Nachum, Danielle Movsowitz and Shunit Agmon for fruitful discussions. This work was partially funded by the Hasso Platner Institute, and by the Pazy Joint Research Foundation.

References

  1. 1.
    Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The resource-as-a-service (RaaS) cloud. In: Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing (HotCloud). USENIX Association (2012)Google Scholar
  2. 2.
    Agmon Ben-Yehuda, O., Ben Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing Amazon EC2 spot instance pricing. ACM Trans. Econ. Comput. (TEAC) 1(3), 16 (2013)Google Scholar
  3. 3.
    Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The rise of RaaS: the resource-as-a-service cloud. Commun. ACM 57(7), 76–84 (2014)CrossRefGoogle Scholar
  4. 4.
    Agmon Ben-Yehuda, O., Posener, E., Ben-Yehuda, M., Schuster, A., Mu’alem, A.: Ginseng: market-driven memory allocation. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE), vol. 49. ACM (2014)Google Scholar
  5. 5.
    Agmon Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: ExPERT: Pareto-efficient task replication on grids and a cloud. In: IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS), pp. 167–178. IEEE (2012)Google Scholar
  6. 6.
    Akbar, M.M., Rahman, M.S., Kaykobad, M., Manning, E.G., Shoja, G.C.: Solving the multidimensional multiple-choice knapsack problem by constructing convex hulls. Comput. Oper. Res. 33(5), 1259–1273 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bae, J., Beigman, E., Berry, R., Honig, M.L., Vohra, R.: An efficient auction for non concave valuations. In: 9th International Meeting of the Society for Social Choice and Welfare (2008)Google Scholar
  8. 8.
    Cameron, C., Singer, J.: We are all economists now: economic utility for multiple heap sizing. In: Proceedings of the 9th International Workshop on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems PLE, p. 3. ACM (2014)Google Scholar
  9. 9.
    Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)CrossRefGoogle Scholar
  11. 11.
    Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., Bianchini, R.: Resource central: understanding and predicting workloads for improved resource management in large cloud platforms. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 153–167. ACM (2017)Google Scholar
  12. 12.
    Dolev, D., Feitelson, D.G., Halpern, J.Y., Kupferman, R., Linial, N.: No justified complaints: on fair sharing of multiple resources. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 68–75. ACM (2012)Google Scholar
  13. 13.
    Funaro, L., Agmon Ben-Yehuda, O., Schuster, A.: Ginseng: market-driven LLC allocation. In: Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference, pp. 295–308. USENIX Association (2016)Google Scholar
  14. 14.
    Funaro, L., Agmon Ben-Yehuda, O., Schuster, A.: Efficient Multi-Resource, Multi-Unit VCG Auction. arXiv e-prints arXiv:1905.09014, May 2019
  15. 15.
    Funaro, L., Agmon Ben-Yehuda, O., Schuster, A.: Stochastic resource allocation. In: Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE 2019. USENIX Association, ACM (2019)Google Scholar
  16. 16.
    Gao, C., Lu, G., Yao, X., Li, J.: An iterative pseudo-gap enumeration approach for the multidimensional multiple-choice knapsack problem. Eur. J. Oper. Res. 260(1), 1–11 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ghassemi-Tari, F., Hendizadeh, H., Hogg, G.L.: Exact solution algorithms for multi-dimensional multiple-choice knapsack problems. Curr. J. Appl. Sci. Technol. 26, 1–21 (2018)CrossRefGoogle Scholar
  18. 18.
    Groves, T.: Incentives in teams. Econ.: J. Econ. Soc. 41, 617–631 (1973)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hifi, M., Sadfi, S., Sbihi, A.: An exact algorithm for the multiple-choice multidimensional knapsack problem. Cahiers de la Maison des Sciences Economiques b04024, Université Panthéon-Sorbonne (Paris 1), March 2004Google Scholar
  20. 20.
    Kellerer, H., Pferschy, U., Pisinger, D.: Introduction to NP-completeness of knapsack problems. In: Kellerer, H., Pferschy, U., Pisinger, D. (eds.) Knapsack Problems, pp. 483–493. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24777-7_16CrossRefzbMATHGoogle Scholar
  21. 21.
    Lavi, R., Mu’Alem, A., Nisan, N.: Towards a characterization of truthful combinatorial auctions. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 574–583. IEEE (2003)Google Scholar
  22. 22.
    Lawler, E.L.: Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4(4), 339–356 (1979) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lazar, A.A., Semret, N.: Design and analysis of the progressive second price auction for network bandwidth sharing. Telecommun. Syst.—Spec. Issue Netw. Econ. (1999)Google Scholar
  24. 24.
    Maillé, P., Tuffin, B.: Multi-bid auctions for bandwidth allocation in communication networks. In: IEEE INFOCOM (2004)Google Scholar
  25. 25.
    Maille, P., Tuffin, B.: Why VCG auctions can hardly be applied to the pricing of inter-domain and ad hoc networks. In: 3rd EuroNGI Conference on Next Generation Internet Networks, pp. 36–39. IEEE (2007)Google Scholar
  26. 26.
    Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. J. Artif. Intell. Res. 29, 19–47 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Roberts, K.: The characterization of implementable choice rules. In: Aggregation and Revelation of Preferences, vol. 12, no. 2, pp. 321–348 (1979)Google Scholar
  28. 28.
    Souma, W.: Universal structure of the personal income distribution. Fractals 9(4), 463–470 (2001)CrossRefGoogle Scholar
  29. 29.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang, T., Berger, E.D., Kaplan, S.F., Moss, J.E.B.: CRAMM: virtual memory support for garbagecollected applications. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI 2006, pp. 103–116. USENIX Association (2006)Google Scholar
  31. 31.
    Ye, C., Brock, J., Ding, C., Jin, H.: Rochester elastic cache utility (RECU): unequal cache sharing is good economics. Int. J. Parallel Program. 45, 1–15 (2015) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Caesarea Rothschild Institute for Interdisciplinary Applications of Computer ScienceUniversity of HaifaHaifaIsrael

Personalised recommendations