Advertisement

Gromov’s Waist of Non-radial Gaussian Measures and Radial Non-Gaussian Measures

  • Arseniy Akopyan
  • Roman Karasev
Chapter
  • 56 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2256)

Abstract

We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns out possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.

We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space.

For reader’s convenience, in one appendix of this paper we provide a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian measures. In the other appendix, we provide a comparison of different variations of Gromov’s pancake method.

Notes

Acknowledgements

The authors thank Alexey Balitskiy, Michael Blank, Alexander Esterov, Sergei Ivanov, Bo’az Klartag, Jan Maas, and the unknown referee for useful discussions, suggestions, and questions.

References

  1. 1.
    A. Akopyan, R. Karasev, A tight estimate for the waist of the ball. Bull. Lond. Math. Soc. 49(4), 690–693 (2017). arXiv:1608.06279. http://arxiv.org/abs/1608.06279
  2. 2.
    A. Akopyan, R. Karasev, Waist of balls in hyperbolic and spherical spaces. Int. Math. Res. Not. (2018). arXiv:1702.07513. https://arxiv.org/abs/1702.07513
  3. 3.
    A. Akopyan, A. Hubard, R. Karasev, Lower and upper bounds for the waists of different spaces. Topol. Methods Nonlinear Anal. 53(2), 457–490 (2019)MathSciNetzbMATHGoogle Scholar
  4. 4.
    M. Berger, Quelques problèmes de géométrie Riemannienne ou deux variations sur les espaces symétriques compacts de rang un. Enseignement Math. 16, 73–96 (1970)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Y. Brenier, Polar factorization and monotone rearrangement of vector-values functions. Commun. Pure Appl. Math. XLIV(10), 375–417 (1991)Google Scholar
  6. 6.
    L.A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities. Commun. Math. Phys. 214(3), 547–563 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. de Rham, On the Area of Complex Manifolds. Notes for the Seminar on Several Complex Variables (Institute for Advanced Study, Princeton, 1957–1958)Google Scholar
  8. 8.
    H. Federer, Some theorems on integral currents. Trans. Am. Math. Soc. 117, 43–67 (1965)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Gromov, Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Harvey, H.B. Lawson Jr., Calibrated geometries. Acta Math. 148(1), 47–157 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    W.-Y. Hsiang, H.B. Lawson Jr., Minimal submanifolds of low cohomogeneity. J. Differ. Geom. 5, 1–38 (1971)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Karasev, A. Volovikov, Waist of the sphere for maps to manifolds. Topol. Appl. 160(13), 1592–1602 (2013). arXiv:1102.0647. http://arxiv.org/abs/1102.0647
  13. 13.
    B. Klartag, Convex geometry and waist inequalities. Geom. Funct. Anal. 27(1), 130–164 (2017). arXiv:1608.04121. http://arxiv.org/abs/1608.04121
  14. 14.
    B. Klartag, Eldan’s stochastic localization and tubular neighborhoods of complex-analytic sets (2017). arXiv:1702.02315. http://arxiv.org/abs/1702.02315
  15. 15.
    A.V. Kolesnikov, Mass transportation and contractions (2011). arXiv:1103.1479. https://arxiv.org/abs/1103.1479
  16. 16.
    Y. Memarian, On Gromov’s waist of the sphere theorem. J. Topol. Anal. 03(01), 7–36 (2011). arXiv:0911.3972. http://arxiv.org/abs/0911.3972
  17. 17.
    N. Palić, Grassmannians, measure partitions, and waists of spheres, PhD thesis, Freie Universität Berlin (2018). https://refubium.fu-berlin.de/handle/fub188/23043
  18. 18.
    W. Wirtinger, Eine determinantenidentität und ihre anwendung auf analytische gebilde und Hermitesche massbestimmung. Monatsh. Math. Phys. 44, 343–365 (1936)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arseniy Akopyan
    • 1
  • Roman Karasev
    • 2
    • 3
  1. 1.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Institute for Information Transmission Problems RASMoscowRussia

Personalised recommendations