Advertisement

Introduction to Abrasive Water Jet Machining

  • JagadishEmail author
  • Kapil Gupta
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Abrasive water jet machining (AWJM) is an advanced machining process and has a potential to cut a wide range of engineering materials. This chapter provides an understanding of AWJM process. It sheds light on working principle and mechanism of AWJM process and its process parameters, and significant benefits are discussed. This chapter also reviews some of the recent past work on cutting of various engineering materials and machining of complex shapes, typical features, and micro-parts by AWJM.

Keywords

Abrasive Machining Material Water jet 

References

  1. 1.
    K. Gupta, M.K. Gupta, Developments in non-conventional machining for sustainable production—a state of art review. Proc. IMechE Part C J. Mech. Eng. Sci. (2019).  https://doi.org/10.1177/0954406218811982Google Scholar
  2. 2.
    K. Gupta, M. Manjaiah, M. Avvari, A. Mashamba, Ice-jet machining—a sustainable variant of abrasive water jet machining, in Sustainable Machining, ed. by J.P. Davim (Springer International Publishing, 2017), pp. 67–78. ISBN 978-3-319-51961-6Google Scholar
  3. 3.
    M. Hashish, Cutting with abrasive-waterjets. Mech. Eng. 106(3), 60 (1984)Google Scholar
  4. 4.
    S. Bhowmik, Jagadish, A. Ray, Abrasive water jet machining of composite materials, in Advanced Manufacturing Technologies, ed. by K. Gupta (Springer, 2017), pp. 77–97Google Scholar
  5. 5.
    V.K. Jain, Advanced Machining Processes (Allied Publishers, New Delhi, 2007)Google Scholar
  6. 6.
    M.N. Babu, N. Muthukrishnan, Investigation on surface roughness in abrasive water-jet machining by the response surface method. Mater. Manuf. Processes 29, 1422–1428 (2014)CrossRefGoogle Scholar
  7. 7.
    M.N. Babu, A.A. Fernando, N. Muthukrishnan, Analysis on surface roughness in abrasive water jet machining of aluminium. Prog. Ind. Ecol. 9, 200–206 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Vasanth, T. Muthuramalingam, P. Vinothkumar, T. Geethapriyan, G. Murali, Performance analysis of process parameters on machining titanium (Ti-6Al-4V) alloy using abrasive water jet machining process. Procedia CIRP 46, 139–142 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Li, J. Wang, An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 81(1–4), 361–369 (2015)CrossRefGoogle Scholar
  10. 10.
    V. Bhandarkar, R.A. Jibhakate, T.V.K. Gupta, Influence of process parameters on abrasive water jet machined pockets on Inconel 718 alloy, in Smart Technologies for Energy, Environment and Sustainable Development, ed. by M. Kolhe, P. Labhasetwar, H. Suryawanshi. Lecture Notes on Multidisciplinary Industrial Engineering (Springer, Singapore, 2019)CrossRefGoogle Scholar
  11. 11.
    A.C. Arun Raj, S. Senkathir, T. Geethapriyan, J. Abhijit, Experimental investigation of abrasive waterjet machining of Nickel based superalloys (Inconel 625). IOP Conf. Ser. Mater. Sci. Eng. 402(1), 012181 (2018)Google Scholar
  12. 12.
    M. Uthayakumar, M.A. Khan, S.T. Kumaran, A. Slota, J. Zajac, Machinability of nickel-based superalloy by abrasive water jet machining. Mater. Manuf. Processes 31(13), 1733–1739 (2016)CrossRefGoogle Scholar
  13. 13.
    T.U. Siddiqui, M. Shukla, P.B. Tambe, Optimisation of surface finish in abrasive water jet cutting of Kevlar composites using hybrid Taguchi and response surface method. Int. J. Mech. Mater. Des. 3, 382–402 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Bhowmik, Jagadish, K. Gupta, Modelling and Optimization of Advanced Manufacturing Processes (Springer, 2019)Google Scholar
  15. 15.
    R. Ruiz-Garcia, P.F. Mayuet Ares, J.M. Vazquez-Martinez, J. Salguero Gómez, Influence of abrasive waterjet parameters on the cutting and drilling of CFRP/UNS A97075 and UNS A97075/CFRP Stacks. Materials 12, 107 (2019)CrossRefGoogle Scholar
  16. 16.
    K. Jayakumar, Abrasive water jet machining studies on Kenaf/E-glass fiber polymer composite, in Proceedings of 10th International Conference on Precision, Meso, Micro and Nano Engineering, Chennai, India, 7–9 Dec 2017, pp. 396–399Google Scholar
  17. 17.
    S. Madhu, M. Balasubramanian, Influence of nozzle design and process parameters on surface roughness of CFRP machined by abrasive jet. Mater. Manuf. Processes 32(9), 1011–1018 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Xu, J. Wang, A study of abrasive waterjet cutting of alumina ceramics with controlled nozzle oscillation. Int. J. Adv. Manuf. Technol. 27, 696 (2006)CrossRefGoogle Scholar
  19. 19.
    D. Ghosh, P.K. Das, B. Doloi, Parametric studies of abrasive water jet cutting on surface roughness of silicon nitride materials, in Proceedings of 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), Guwahati, India, 12–14 Dec 2014, pp. 422, 1–5Google Scholar
  20. 20.
    P.D. Unde, M.D. Gayakwad, N.G. Patil, R.S. Pawade, D.G. Thakur, P.K. Brahmankar, Experimental investigations into abrasive waterjet machining of carbon fiber reinforced plastic. J. Compos. ID 971596 (2015).  https://doi.org/10.1155/2015/971596CrossRefGoogle Scholar
  21. 21.
    M. Hashish, Abrasive waterjet cutting of microelectronic components, in Proceedings of WJTA American Waterjet Conference (2005)Google Scholar
  22. 22.
    V.K. Pal, S. Choudhury, Fabrication and analysis of micro-pillars by abrasive water jet machining. Procedia Mater. Sci. 61–71 (2014)Google Scholar
  23. 23.
    Z.W. Liu, R.Y. Liu, Study on pre-mixed micro abrasive water jet machining system. Appl. Mech. Mater. 618, 475–479 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Orbanic, B. Jurisevic, D. Kramar, M. Grah, M. Junkar, Miniaturization of injection abrasive water jet machining process. Proc. IMechE Part C J. Mech. Eng. Sci. 220, 1697–1705 (2006)Google Scholar
  25. 25.
    K.L. Pang, A study of the abrasive waterjet micro-machining process for amorphous glasses, PhD thesis, The University of New South Wales (2011)Google Scholar
  26. 26.
    T. Gutowski, J. Dahmus, S. Dalquist, Measuring the environmental load of manufacturing processes, in International Society for Industrial Ecology (ISIE), 3rd International Conference on Industrial Ecology for a Sustainable Future, Stockholm, Sweden (2003)Google Scholar
  27. 27.
    Jagadish, S. Bhowmik, A. Ray, Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach. J. Intell. Manuf. 1–15 (2015)Google Scholar
  28. 28.
    R. Kovacevic, M. Hashish, R. Mohan, M. Ramulu, T.J. Kim, E.S. Geskin, State of the art of research and development in abrasive water jet machining. J. Manuf. Sci. Eng. 119(4B), 776–785 (1997)CrossRefGoogle Scholar
  29. 29.
    T. Phokane, K. Gupta, M.K. Gupta, Near net shape manufacturing of miniature spur brass gears by abrasive water jet machining, in Near Net Shape Manufacturing Processes, ed. by K. Gupta (Springer, 2019), pp. 143–158Google Scholar
  30. 30.
    T.C. Phokane, K. Gupta, C. Popa, On abrasive water jet machining of miniature brass gears, in Proceedings of International Gear Conference, vol. II, Lyon (France) (Chartridge Books Oxford, 2018), pp. 384–392. ISBN 978-1-911033-43-1Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyRaipurIndia
  2. 2.Department of Mechanical and Industrial Engineering TechnologyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations