Advertisement

Infant Milk Formulas

  • A. Logeshwaran
  • Pavidharshini Selvasekaran
  • Ramalingam ChidambaramEmail author
Chapter
  • 20 Downloads

Abstract

Milk is the most important nutritional source for newborns and infants during the initial months of their lives. Breast milk is healthy for infants as it is easily digestible. Apart from its nutritional value, breast milk is known to have a positive impact on infants’ growth and development as it provides biochemical and immunological components including proteins, cytokines and hormones. Breast milk also decreases the risk of diarrhea, and morbidity from respiratory tract and urinary tract infections. In addition, breast feeding helps mothers to regain pre-pregnancy body weight and to return the uterus to its normal size and shape. In a few cases, however, breastfeeding is not possible due to conditions associated with the modern era such as malnutrition, the absence of the mother, insufficient lactation, food allergies and other maternal health issues. Because of these problems, infant milk formula may be preferred as an alternative, and is manufactured by industries to mimic the nutritional value of breast milk. Infant formulas, baby formulas or baby milk commonly use cow’s milk or soymilk as a base with added nutritional supplements. Nevertheless, infants fed with formula are at a higher risk from acute otitis media, asthma, type 1 and 2 diabetes, eczema, lower respiratory tract infections, sudden infant death syndrome (SIDS) and obesity. This article reviews human breast milk and problems associated with breast feeding, the need for infant formulas as an alternative form of nutrition, different types of infant formulas, the health benefits and risks of infant formulas, guidelines for the manufacture of infant formulas, and the global market.

Keywords

Breast feeding Clinical trials Formula types Global market 

Notes

Acknowledgments

The authors would like to thank the VIT University (Vellore, Tamil Nadu, India) for their ceaseless support and motivation.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Adgent, M. A., Daniels, J. L., Rogan, W. J., Adair, L., Edwards, L. J., Westreich, D., Maisonet, M., & Marcus, M. (2012). Early-life soy exposure and age at menarche. Paediatric and Perinatal Epidemiology, 26(2), 163–175.  https://doi.org/10.1111/j.1365-3016.2011.01244.x.CrossRefPubMedGoogle Scholar
  2. Aggett, P. J., Agostoni, C., Goulet, O., Hernell, O., Koletzko, B., Lafeber, H. L., Michaelsen, K. F., Milla, P., Rigo, J., & Weaver, L. T. (2002). Antireflux or antiregurgitation milk products for infants and young children: A commentary by the ESPGHAN committee on nutrition. Journal of Pediatric Gastroenterology and Nutrition, 34(5), 496–498. Available: https://journals.lww.com/jpgn/fulltext/2002/05000/allergy_to_carob_gum_in_an_infant.3.aspx#pdf-link.CrossRefGoogle Scholar
  3. Allen, J., & Hector, D. (2005). Benefits of breastfeeding. New South Wales public health bulletin, 16(4), 42–46. Available in: http://www.publish.csiro.au/nb/pdf/nb05011.
  4. Anderson, S. A., Chinn, H. I., & Fisher, K. D. (1982). History and current status of infant formulas. The American Journal of Clinical Nutrition, 35(2), 381–397.  https://doi.org/10.1093/ajcn/35.2.381.CrossRefPubMedGoogle Scholar
  5. Ball, J. W., Bindler, R. C., & Cowen, K. J. (2013). Child health nursing. Upper Saddle River: Prentice Hall.Google Scholar
  6. Barlow, B., Santulli, T. V., Heird, W. C., Pitt, J., Blanc, W. A., & Schullinger, J. N. (1974). An experimental study of acute neonatal enterocolitis-the importance of breast milk. Journal of Pediatric Surgery, 9(5), 587–595.  https://doi.org/10.1016/0022-3468(74)90093-1.CrossRefPubMedGoogle Scholar
  7. Becker, S. D., & Becker, P. G. (2000). Multilayer infant support and reclining pillow device. U.S. Patent No. 6,079,067. Washington, DC: U.S. Patent and Trademark Office. Available in: https://patentimages.storage.googleapis.com/22/22/6c/4f8e57c9a8369c/US6079067.pdf.
  8. Bhandari, B. R., Bansal, N., Zhang, M., & Schuck, P. (Eds.). (2013). Handbook of food powders: Processes and properties. Woodhead Publishing. ISBN 978-0-85709-513-8. doi: https://doi.org/10.1533/9780857098672
  9. Bode, L. (2015). The functional biology of human milk oligosaccharides. Early Human Development, 91(11), 619–622.  https://doi.org/10.1016/j.earlhumdev.2015.09.001.CrossRefPubMedGoogle Scholar
  10. Boehm, G., Lidestri, M., Casetta, P., Jelinek, J., Negretti, F., Stahl, B., & Marini, A. (2002). Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 86(3), F178–F181.  https://doi.org/10.1136/fn.86.3.f178.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boehm, G., Stahl, B., Jelinek, J., Knol, J., Miniello, V., & Moro, G. E. (2005). Prebiotic carbohydrates in human milk and formulas. Acta Paediatrica, 94, 18–21.  https://doi.org/10.1111/j.1651-2227.2005.tb02149.x.CrossRefPubMedGoogle Scholar
  12. Bowen, W. H., & Lawrence, R. A. (2005). Comparison of the cariogenicity of cola, honey, cow milk, human milk, and sucrose. Pediatrics, 116(4), 921–926.  https://doi.org/10.1542/peds.2004-2462.CrossRefPubMedGoogle Scholar
  13. Brady, J. P. (2012). Marketing breast milk substitutes: Problems and perils throughout the world. Archives of Disease in Childhood, 97(6), 529–532.  https://doi.org/10.1136/archdischild-2011-301299.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brenna, J. T., & Carlson, S. E. (2014). Docosahexaenoic acid and human brain development: Evidence that a dietary supply is needed for optimal development. Journal of Human Evolution, 77, 99–106.  https://doi.org/10.1016/j.jhevol.2014.02.017.CrossRefPubMedGoogle Scholar
  15. Buck, C. B., Thompson, C. D., Roberts, J. N., Müller, M., Lowy, D. R., & Schiller, J. T. (2006). Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathogens, 2(7), 0671–0680.  https://doi.org/10.1371/journal.ppat.0020069.CrossRefGoogle Scholar
  16. Businco, L., Giampietro, P. G., Lucenti, P., Lucaroni, F., Pini, C., Di Felice, G., Iacovacci, P., Curadi, C., & Orlandi, M. (2000). Allergenicity of mare’s milk in children with cow’s milk allergy. Journal of Allergy and Clinical Immunology, 105(5), 1031–1034.  https://doi.org/10.1067/mai.2000.106377.CrossRefPubMedGoogle Scholar
  17. Butte, N. F., & Hopkinson, J. M. (1998). Body composition changes during lactation are highly variable among women. The Journal of Nutrition, 128(2), 381S–385S.  https://doi.org/10.1093/jn/128.2.381s.CrossRefPubMedGoogle Scholar
  18. Chan, Y. H., Shek, L. P. C., Aw, M., Quak, S. H., & Lee, B. W. (2002). Use of hypoallergenic formula in the prevention of atopic disease among Asian children. Journal of Paediatrics and Child Health, 38(1), 84–88.  https://doi.org/10.1046/j.1440-1754.2002.00725.x.CrossRefPubMedGoogle Scholar
  19. Chandra, R. K. (1997). Five-year follow-up of high-risk infants with family history of allergy who were exclusively breast-fed or fed partial whey hydrolysate, soy, and conventional cow’s milk formulas. Journal of Pediatric Gastroenterology and Nutrition, 24(4), 380–388.  https://doi.org/10.1097/mpg.0000000000001327.CrossRefPubMedGoogle Scholar
  20. Chao, H. H., Guo, C. H., Huang, C. B., Chen, P. C., Li, H. C., Hsiung, D. Y., & Chou, Y. K. (2014). Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatrics & Neonatology, 55(2), 127–134.  https://doi.org/10.1016/j.pedneo.2013.08.005.CrossRefGoogle Scholar
  21. Chassard, C., de Wouters, T., & Lacroix, C. (2014). Probiotics tailored to the infant: A window of opportunity. Current Opinion in Biotechnology, 26, 141–147.  https://doi.org/10.1016/j.copbio.2013.12.012.CrossRefPubMedGoogle Scholar
  22. Cleveland, L. M. (2016). Breastfeeding recommendations for women who receive medication-assisted treatment for opioid use disorders: AWHONN practice brief number 4. Nursing for Women’s Health, 20(4), 432–434.  https://doi.org/10.1016/s1751-4851(16)30207-0.CrossRefPubMedGoogle Scholar
  23. CODEX STAN 72–1981, Codex Alimentarius – International food standards, Food and Agriculture Organization (FAO) & World Health Organization (WHO) of the United Nations. (2007). Stan 72–1981. Standard for infant formula and formulas for special medical purposes intended for infants. Revised.Google Scholar
  24. Cook, D. A. (1989). Nutrient levels in infant formulas: Technical considerations. The Journal of Nutrition, 119(suppl_12), 1773–1778.  https://doi.org/10.1093/jn/119.suppl_12.1773.CrossRefPubMedGoogle Scholar
  25. Cordier, J.-L. (2008). Production of powdered infant formulae and microbiological control measures. In J. M. Farber & S. J. Forsythe (Eds.), Enterobacter sakazakii (pp. 145–185). American Society of Microbiology.  https://doi.org/10.1128/9781555815608.ch6.
  26. Cruz, G. C., Din, Z., Feri, C. D., Balaoing, A. M., Gonzales, E. M., Navidad, H. M., Schlaaff, M. M. F., & Winter, J. (2009). Analysis of toxic heavy metals (arsenic, lead and mercury) in selected infant formula milk commercially available in the Philippines by AAS. E-International Scientific Research Journal, 1(1), 40–51. Available in: https://pdfs.semanticscholar.org/5aaa/f74e939ebd6c8f25773eb2e387de56d54f8d.pdf.
  27. De Onis, M., Onyango, A. W., Borghi, E., Garza, C., Yang, H., & WHO Multicentre Growth Reference Study Group. (2006). Comparison of the World Health Organization (WHO) child growth standards and the National Center for Health Statistics/WHO international growth reference: Implications for child health programmes. Public Health Nutrition, 9(7), 942–947.  https://doi.org/10.1017/phn20062005.CrossRefPubMedGoogle Scholar
  28. Deckelbaum, R. J., Adair, L., Appelbaum, M., Baker, G. L., Baker, S. S., Berlin, C., Jr., et al. (2004). Infant formula: Evaluating the safety of new ingredients. Washington, DC: The National Academies Press.Google Scholar
  29. Devaney, B., Ziegler, P., Pac, S., Karwe, V., & Barr, S. I. (2004). Nutrient intakes of infants and toddlers. Journal of the American Dietetic Association, 104(suppl 1), 14–21.  https://doi.org/10.1016/j.jada.2003.10.022.CrossRefGoogle Scholar
  30. Eidelman, A. I., & Schanler, R. J. (2012). Breastfeeding and the use of human milk. Pediatrics, 129(3), e827–e841.  https://doi.org/10.1542/peds.2011-3552.CrossRefGoogle Scholar
  31. Fanaro, S., Ballardini, E., & Vigi, V. (2010). Different pre-term formulas for different pre-term infants. Early Human Development, 86(1), 27–31.  https://doi.org/10.1016/j.earlhumdev.2010.01.005.CrossRefPubMedGoogle Scholar
  32. Fiocchi, A., Brozek, J., Schünemann, H., Bahna, S. L., Von Berg, A., Beyer, K., Bozzola, M., Bradsher, J., Compalati, E., Ebisawa, M., Guzmán, M. A., Li, H., Heine, R. G., Keith, P., Lack, G., Landi, M., Martelli, A., Rancé, F., Sampson, H., Stein, A., Terracciano, L., & Vieths, S. (2010). World Allergy Organization (WAO) diagnosis and rationale for action against cow’s milk allergy (DRACMA) guidelines. World Allergy Organization Journal, 3(4), 57–125.  https://doi.org/10.1111/j.1399-3038.2010.01068.x.CrossRefPubMedGoogle Scholar
  33. Fomon, S. J. (1993). Nutrition of normal infants. St. Louis: Mosby-Year Book, Inc.Google Scholar
  34. Gao, Z., Wang, W., Zhao, Z., & Guo, M. (2011). Novel whey protein-based aqueous polymer-isocyanate adhesive for glulam. Journal of Applied Polymer Science, 120(1), 220–225.  https://doi.org/10.1002/app.33025.CrossRefGoogle Scholar
  35. Gartner, L. M., Morton, J., Lawrence, R. A., Naylor, A. J., O’Hare, D., Schanler, R. J., & Eidelman, A. I. (2005). Breastfeeding and the use of human milk. Pediatrics, 115(2), 496–506.  https://doi.org/10.1542/peds.2004-2491.CrossRefPubMedGoogle Scholar
  36. Gill, D. G., Vincent, S., & Segal, D. S. (1997). Follow-on formula in the prevention of iron deficiency: A multicentre study. Acta Paediatrica, 86(7), 683–689.  https://doi.org/10.1111/j.1651-2227.1997.tb08568.x.CrossRefPubMedGoogle Scholar
  37. Guo, M. (Ed.). (2014). Human milk biochemistry and infant formula manufacturing technology. Cambridge, UK: Woodhead Publishing. ISBN 978-1-84569-724-2. doi: https://doi.org/10.1016/c2013-0-17349-7.
  38. Hauck, F. R., Thompson, J. M., Tanabe, K. O., Moon, R. Y., & Vennemann, M. M. (2011). Breastfeeding and reduced risk of sudden infant death syndrome: A meta-analysis. Pediatrics, 128(1), 103–110.  https://doi.org/10.1542/peds.2010-3000.CrossRefPubMedGoogle Scholar
  39. Heppell, L. M. J., Cant, A. J., & Kilshaw, P. J. (1984). Reduction in the antigenicity of whey proteins by heat treatment: A possible strategy for producing a hypoallergenic infant milk formula. British Journal of Nutrition, 51(1), 29–36.  https://doi.org/10.1079/bjn19840006.CrossRefPubMedGoogle Scholar
  40. Hochwallner, H., Schulmeister, U., Swoboda, I., Spitzauer, S., & Valenta, R. (2014). Cow’s milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods, 66(1), 22–33.  https://doi.org/10.1016/j.ymeth.2013.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Huang, J., Wu, L., Yalda, D., Adkins, Y., Kelleher, S. L., Crane, M., Lonnerdal, B., Rodriguez, R. L., & Huang, N. (2002). Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Research, 11(3), 229–239.  https://doi.org/10.1023/a:1015663706259.CrossRefPubMedGoogle Scholar
  42. Iversen, C., & Forsythe, S. (2003). Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends in Food Science & Technology, 14(11), 443–454.  https://doi.org/10.1016/s0924-2244(03)00155-9.CrossRefGoogle Scholar
  43. Kerr, M., & Lie, D. (2008). Neurodevelopmental delays associated with iron-fortified formula for healthy infants. Medscape Psychiatry and Mental Health. Available in: https://www.medscape.com/viewarticle/574339.
  44. Kirk, A. B., Martinelango, P. K., Tian, K., Dutta, A., Smith, E. E., & Dasgupta, P. K. (2005). Perchlorate and iodide in dairy and breast milk. Environmental Science & Technology, 39(7), 2011–2017.  https://doi.org/10.1021/es048118t.CrossRefGoogle Scholar
  45. Kleinman, R. E. (1992). Cow milk allergy in infancy and hypoallergenic formulas. The Journal of Pediatrics, 121(5), S116–S121.  https://doi.org/10.1016/s0022-3476(05)81419-2.CrossRefPubMedGoogle Scholar
  46. Koletzko, B., Baker, S., Cleghorn, G., Neto, U. F., Gopalan, S., Hernell, O., Hock, Q. S., Jirapinyo, P., Lonnerdal, B., Pencharz, P., Pzyrembel, H., Ramirez-Mayans, J., Shamir, R., Turck, D., Yamashiro, Y., & Zong-Yi, D. (2005). Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. Journal of Pediatric Gastroenterology and Nutrition, 41(5), 584–599.  https://doi.org/10.1097/01.mpg.0000187817.38836.42.CrossRefPubMedGoogle Scholar
  47. Koletzko, B., Beyer, J., Brands, B., Demmelmair, H., Grote, V., Haile, G., Gruszfeld, D., Rzehak, P., Socha, P., Weber, M., & for The European Childhood Obesity Trial Study Group. (2013). Early influences of nutrition on postnatal growth. In M. W. Gillman, P. D. Gluckman, & R. G. Rosenfeld (Eds.), Recent advances in growth research: Nutritional, molecular and endocrine perspectives (Vol. 71, pp. 11–27). Karger Publishers.  https://doi.org/10.1159/000342533.
  48. Kunz, C., & Lönnerdal, B. (1992). Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatrica, 81(2), 107–112.  https://doi.org/10.1111/j.1651-2227.1992.tb12184.x.CrossRefPubMedGoogle Scholar
  49. Lam, H. M., Remais, J., Fung, M. C., Xu, L., & Sun, S. S. M. (2013). Food supply and food safety issues in China. The Lancet, 381(9882), 2044–2053.  https://doi.org/10.1016/s0140-6736(13)60776-x.CrossRefGoogle Scholar
  50. Lasekan, J. B., Jacobs, J., Reisinger, K. S., Montalto, M. B., Frantz, M. P., & Blatter, M. M. (2011). Lactose-free milk protein-based infant formula: Impact on growth and gastrointestinal tolerance in infants. Clinical Pediatrics, 50(4), 330–337.  https://doi.org/10.1177/0009922810390511.CrossRefPubMedGoogle Scholar
  51. Lessen, R., & Kavanagh, K. (2015). Position of the academy of nutrition and dietetics: Promoting and supporting breastfeeding. Journal of the Academy of Nutrition and Dietetics, 115(3), 444–449.  https://doi.org/10.1016/j.jand.2014.12.014.CrossRefPubMedGoogle Scholar
  52. Lönnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. The American Journal of Clinical Nutrition, 77(6), 1537S–1543S.  https://doi.org/10.1093/ajcn/77.6.1537s.CrossRefPubMedGoogle Scholar
  53. Lucas, A., Quinlan, P., Abrams, S., Ryan, S., Meah, S., & Lucas, P. J. (1997). Randomised controlled trial of a synthetic triglyceride milk formula for preterm infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 77(3), F178–F184.  https://doi.org/10.1136/fn.77.3.f178.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Luoto, R., Ruuskanen, O., Waris, M., Kalliomäki, M., Salminen, S., & Isolauri, E. (2014). Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 133(2), 405–413.  https://doi.org/10.1016/j.jaci.2013.08.020.CrossRefPubMedGoogle Scholar
  55. Luyt, D., Ball, H., Makwana, N., Green, M. R., Bravin, K., Nasser, S. M., & Clark, A. T. (2014). BSACI guideline for the diagnosis and management of cow’s milk allergy. Clinical & Experimental Allergy, 44(5), 642–672.  https://doi.org/10.1111/cea.12302.CrossRefGoogle Scholar
  56. Makrides, M., Neumann, M. A., & Gibson, R. A. (1996). Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. European Journal of Clinical Nutrition, 50(6), 352–357.PubMedGoogle Scholar
  57. Martín, R., Jiménez, E., Heilig, H., Fernández, L., Marín, M. L., Zoetendal, E. G., & Rodríguez, J. M. (2009). Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Applied and Environmental Microbiology, 75(4), 965–969.  https://doi.org/10.1128/aem.02063-08.CrossRefPubMedGoogle Scholar
  58. Martin, C., Ling, P. R., & Blackburn, G. (2016). Review of infant feeding: Key features of breast milk and infant formula. Nutrients, 8(5), 279.  https://doi.org/10.3390/nu8050279.CrossRefPubMedCentralGoogle Scholar
  59. Melnik, B. C. (2012). Excessive leucine-mTORC1-signalling of cow milk-based infant formula: The missing link to understand early childhood obesity. Journal of Obesity, 197653.  https://doi.org/10.1155/2012/197653.
  60. Michaelsen, K. F., Larsen, P. S., Thomsen, B. L., & Samuelson, G. (1994). The Copenhagen cohort study on infant nutrition and growth: Breast-milk intake, human milk macronutrient content, and influencing factors. The American Journal of Clinical Nutrition, 59(3), 600–611.  https://doi.org/10.1093/ajcn/59.3.600.CrossRefPubMedGoogle Scholar
  61. Miles, E. A., & Calder, P. C. (1998). Modulation of immune function by dietary fatty acids. Proceedings of the Nutrition Society, 57(2), 277–292.  https://doi.org/10.1079/pns19980042.CrossRefPubMedGoogle Scholar
  62. Miller, E. M., Aiello, M. O., Fujita, M., Hinde, K., Milligan, L., & Quinn, E. A. (2013). Field and laboratory methods in human milk research. American Journal of Human Biology, 25(1), 1–11.  https://doi.org/10.1002/ajhb.22334.CrossRefPubMedGoogle Scholar
  63. Montagne, D. H., Van Dael, P., Skanderby, M., & Hugelshofer, W. (2009). Infant formulae-powders and liquids. In: Dairy powders and concentrated products. Tamime, A. Y. (Ed.). pp. 294–331. Blackwell Publishing: Chichester. doi: https://doi.org/10.1002/9781444322729.ch9.
  64. Morley, R., Abbott, R., Fairweather-Tait, S., MacFadyen, U., Stephenson, T., & Lucas, A. (1999). Iron fortified follow on formula from 9 to 18 months improves iron status but not development or growth: A randomised trial. Archives of Disease in Childhood, 81(3), 247–252.  https://doi.org/10.1136/adc.81.3.247.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Moro, G. E. (2018). History of milk banking: From origin to present time. Breastfeeding Medicine, 13(S1), S-16.  https://doi.org/10.1089/bfm.2018.29077.gem.CrossRefGoogle Scholar
  66. Musilova, S., Rada, V., Vlkova, E., & Bunesova, V. (2014). Beneficial effects of human milk oligosaccharides on gut microbiota. Beneficial Microbes, 5(3), 273–283.  https://doi.org/10.3920/bm2013.0080.CrossRefPubMedGoogle Scholar
  67. Nguyen, T. T., Bhandari, B., Cichero, J., & Prakash, S. (2015). Gastrointestinal digestion of dairy and soy proteins in infant formulas: An in vitro study. Food Research International, 76(Part 3), 348–358.  https://doi.org/10.1016/j.foodres.2015.07.030.CrossRefPubMedGoogle Scholar
  68. O’Callaghan, D. M., & Wallingford, J. C. (2002). Infant formulae–new developments. In H. Roginski (Ed.), Encyclopedia of dairy sciences (pp. 1384–1392). Academic.  https://doi.org/10.1016/b0-12-227235-8/00212-1.
  69. O’connor, N. R. (2009). Infant formula. American Family Physician, 79(7), 565–570.PubMedGoogle Scholar
  70. Osborn, D. A., & Sinn, J. K. (2007). Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database of Systematic Reviews, 4.  https://doi.org/10.1002/14651858.cd006475.pub2.
  71. Pate, B. L. (2009). Effectiveness of Web-based programs in improving breastfeeding self-efficacy (Doctoral dissertation, University of Arkansas for Medical Sciences). Available in: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.620.5559&rep=rep1&type=pdf.
  72. Patil, K. P., & Gogate, P. R. (2015). Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chemical Engineering Journal, 268, 187–196.  https://doi.org/10.1016/j.cej.2015.01.050.CrossRefGoogle Scholar
  73. Pearce, E. N., Leung, A. M., Blount, B. C., Bazrafshan, H. R., He, X., Pino, S., Valentin-Blasini, L., & Braverman, L. E. (2007). Breast milk iodine and perchlorate concentrations in lactating Boston-area women. The Journal of Clinical Endocrinology & Metabolism, 92(5), 1673–1677.  https://doi.org/10.1210/jc.2006-2738.CrossRefGoogle Scholar
  74. Perrin, M. T., Fogleman, A. D., Newburg, D. S., & Allen, J. C. (2017). A longitudinal study of human milk composition in the second year postpartum: Implications for human milk banking. Maternal & Child Nutrition, 13(1), e12239.  https://doi.org/10.1111/mcn.12239.CrossRefGoogle Scholar
  75. Persico, M., Podoshin, L., Fradis, M., Golan, D., & Wellisch, G. (1983). Recurrent middle-ear infections in infants: The protective role of maternal breast feeding. Ear, Nose, & Throat Journal, 62(6), 297. Available in: https://www.ncbi.nlm.nih.gov/pubmed/6409579.
  76. Picciano, M. F. (2001). Nutrient composition of human milk. Pediatric Clinics of North America, 48(1), 53–67.  https://doi.org/10.1016/s0031-3955(05)70285-6.CrossRefPubMedGoogle Scholar
  77. Pisecky, J. (1997). Handbook of milk powder manufacture. Copenhagen: Niro A.Google Scholar
  78. Pratt, H. F. (1984). Breastfeeding and eczema. Early Human Development, 9(3), 283–290.  https://doi.org/10.1016/0378-3782(84)90039-2.CrossRefPubMedGoogle Scholar
  79. Prentice, A. (1996). Constituents of human milk. Food and Nutrition Bulletin, 17(4), 1–10.  https://doi.org/10.1177/156482659601700406.CrossRefGoogle Scholar
  80. Ragno, V., Giampietro, P. G., Bruno, G., & Businco, L. (1993). Allergenicity of milk protein hydrolysate formulae in children with cow’s milk allergy. European Journal of Pediatrics, 152(9), 760–762.  https://doi.org/10.1007/bf01953996.CrossRefPubMedGoogle Scholar
  81. Rassin, D. K., Sturman, J. A., & Gaull, G. E. (1978). Taurine and other free amino acids in milk of man and other mammals. Early Human Development, 2(1), 1–13.  https://doi.org/10.1016/0378-3782(78)90048-8.CrossRefPubMedGoogle Scholar
  82. Rechtman, D. J., Ferry, B., Lee, M. L., & Chapel, H. (2002). Immunoglobulin A (IgA) content of human breast milk over time. International Journal of Infectious Diseases, 6, S58.CrossRefGoogle Scholar
  83. Rogan, W. J., Gladen, B. C., McKinney, J. D., Carreras, N., Hardy, P., Thullen, J., Tingelstad, J., & Tully, M. (1987). Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: Effects on growth, morbidity, and duration of lactation. American Journal of Public Health, 77(10), 1294–1297.  https://doi.org/10.2105/ajph.77.10.1294.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Satué-Gracia, M. T., Frankel, E. N., Rangavajhyala, N., & German, J. B. (2000). Lactoferrin in infant formulas: Effect on oxidation. Journal of Agricultural and Food Chemistry, 48(10), 4984–4990.  https://doi.org/10.1021/jf0002490.CrossRefPubMedGoogle Scholar
  85. Savino, F., Benetti, S., Liguori, S. A., Sorrenti, M., & Cordero Di Montezemolo, L. (2013). Advances on human milk hormones and protection against obesity. Cellular and Molecular Biology, 59(1), 89–98.  https://doi.org/10.1170/950.CrossRefPubMedGoogle Scholar
  86. Schuck, P. (2002). Spray drying of dairy products: State of the art. Le Lait, 82(4), 375–382.  https://doi.org/10.1051/lait:2002017.CrossRefGoogle Scholar
  87. Setchell, K. D., Zimmer-Nechemias, L., Cai, J., & Heubi, J. E. (1997). Exposure of infants to phyto-oestrogens from soy-based infant formula. The Lancet, 350(9070), 23–27.  https://doi.org/10.1016/s0140-6736(96)09480-9.CrossRefGoogle Scholar
  88. Simmer, K., & Hartmann, B. (2009). The knowns and unknowns of human milk banking. Early Human Development, 85(11), 701–704.  https://doi.org/10.1016/j.earlhumdev.2009.08.054.CrossRefPubMedGoogle Scholar
  89. Spitzer, A. B., Polin, R. A., Alan, R., & Richard, A. (2001). Fetal and neonatal secrets.Google Scholar
  90. Strom, B. L., Schinnar, R., Ziegler, E. E., Barnhart, K. T., Sammel, M. D., Macones, G. A., Stallings, V. A., Drulis, J. M., Nelson, S. E., & Hanson, S. A. (2001). Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA, 286(7), 807–814.  https://doi.org/10.1001/jama.286.7.807.CrossRefPubMedGoogle Scholar
  91. Thomas, B., Marshall, R. S., Gold, S. B., & Forrest, A. (2004). Visual art and breast health promotion: Artists’ perspectives. Canadian Oncology Nursing Journal/Revue canadienne de soins infirmiers en Oncologie, 14(4), 233–237.  https://doi.org/10.5737/1181912x144233237.CrossRefGoogle Scholar
  92. van Goor, S. A., Smit, E. N., Schaafsma, A., Dijck-Brouwer, D. J., & Muskiet, F. A. (2008). Milk of women with lifetime consumption of the recommended daily intake of fish fatty acids should constitute the basis for the DHA contents of infant formula. Journal of Perinatal Medicine, 36(6), 548–549.  https://doi.org/10.1515/jpm.2008.099.CrossRefPubMedGoogle Scholar
  93. Van Odijk, J., Kull, I., Borres, M. P., Brandtzaeg, P., Edberg, U., Hanson, L. Å., Høst, A., Kuitunen, M., Olsen, S. F., Skerfving, S., Sundell, J., & Wille, S. (2003). Breastfeeding and allergic disease: A multidisciplinary review of the literature (1966–2001) on the mode of early feeding in infancy and its impact on later atopic manifestations. Allergy, 58(9), 833–843.  https://doi.org/10.1034/j.1398-9995.2003.00264.x.CrossRefPubMedGoogle Scholar
  94. Vandenplas, Y., De Ronne, N., Van De Sompel, A., Huysentruyt, K., Robert, M., Rigo, J., Scheers, I., Brasseur, D., & Goyens, P. (2014). A Belgian consensus-statement on growing-up milks for children 12–36 months old. European Journal of Pediatrics, 173(10), 1365–1371.  https://doi.org/10.1007/s00431-014-2321-7.CrossRefPubMedGoogle Scholar
  95. Vennemann, M. M., Bajanowski, T., Brinkmann, B., Jorch, G., Yücesan, K., Sauerland, C., & Mitchell, E. A. (2009). Does breastfeeding reduce the risk of sudden infant death syndrome? Pediatrics, 123(3), e406–e410.  https://doi.org/10.1542/peds.2008-2145.CrossRefPubMedGoogle Scholar
  96. Verd, S., Ginovart, G., Calvo, J., Ponce-Taylor, J., & Gaya, A. (2018). Variation in the protein composition of human milk during extended lactation: A narrative review. Nutrients, 10(8), 1124.  https://doi.org/10.3390/nu10081124.CrossRefPubMedCentralGoogle Scholar
  97. Viljanen, M., Kuitunen, M., Haahtela, T., Juntunen-Backman, K., Korpela, R., & Savilahti, E. (2005). Probiotic effects on faecal inflammatory markers and on faecal IgA in food allergic atopic eczema/dermatitis syndrome infants. Pediatric Allergy and Immunology, 16(1), 65–71.  https://doi.org/10.1111/j.1399-3038.2005.00224.x.CrossRefPubMedGoogle Scholar
  98. Walker, W. A. (2013). Initial intestinal colonization in the human infant and immune homeostasis. Annals of Nutrition and Metabolism, 63(Suppl. 2), 8–15.  https://doi.org/10.1159/000354907.CrossRefPubMedGoogle Scholar
  99. Weiner, M. L., Ferguson, H. E., Thorsrud, B. A., Nelson, K. G., Blakemore, W. R., Zeigler, B., Cameron, M. J., Brant, A., Cochrane, L., Pellerin, M., & Mahadevan, B. (2015). An infant formula toxicity and toxicokinetic feeding study on carrageenan in preweaning piglets with special attention to the immune system and gastrointestinal tract. Food and Chemical Toxicology, 77, 120–131.  https://doi.org/10.1016/j.fct.2014.12.022.CrossRefPubMedGoogle Scholar
  100. Weseler, A. R., Dirix, C. E., Bruins, M. J., & Hornstra, G. (2008). Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk. The Journal of Nutrition, 138(11), 2190–2197.  https://doi.org/10.3945/jn.108.089318.CrossRefPubMedGoogle Scholar
  101. World Health Organization (WHO) – UNICEF. (2003). Global strategy for infant and young child feeding. Available in: https://apps.who.int/iris/bitstream/handle/10665/42590/9241562218.pdf;jsessionid=79f0bdf9dcc81dc72239bfbec22ce14d?sequence=1.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Logeshwaran
    • 1
  • Pavidharshini Selvasekaran
    • 1
  • Ramalingam Chidambaram
    • 2
    Email author
  1. 1.Instrumental & Food Analysis Laboratory, Industrial Biotechnology Division, School of Biosciences and TechnologyVellore Institute of Technology (VIT)VelloreIndia
  2. 2.Instrumental & Food Analysis Laboratory, Industrial Biotechnology Division, School of Bioscience & TechnologyVellore Institute of Technology (VIT)VelloreIndia

Personalised recommendations