Advertisement

Airfoil Selection and Wingsail Design for an Autonomous Sailboat

  • Manuel F. SilvaEmail author
  • Benedita Malheiro
  • Pedro Guedes
  • Paulo Ferreira
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1092)

Abstract

Ocean exploration and monitoring with autonomous platforms can provide researchers and decision makers with valuable data, trends and insights into the largest ecosystem on Earth. Regardless of the recognition of the importance of such platforms in this scenario, their design and development remains an open challenge. In particular, energy efficiency, control and robustness are major concerns with implications in terms of autonomy and sustainability. Wingsails allow autonomous boats to navigate with increased autonomy, due to lower power consumption, and greater robustness, due to simpler control. Within the scope of a project that addresses the design, development and deployment of a rigid wing autonomous sailboat to perform long term missions in the ocean, this paper summarises the general principles for airfoil selection and wingsail design in robotic sailing, and are given some insights on how these aspects influence the autonomous sailboat being developed by the authors.

Keywords

Rigid wingsail Autonomous sailboat Wingsail design 

Notes

Funding

This work was partially financed by National Funds through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT), within project UID/EEA/50014/2019.

References

  1. 1.
    Anderson, D.F., Eberhardt, S.: Understanding Flight. McGraw-Hill, New York (2010)Google Scholar
  2. 2.
    Atkins, D.W.: The CFD assisted design and experimental testing of a wingsail with high lift devices. Ph.D. thesis, University of Salford (1996)Google Scholar
  3. 3.
    DelMar Conde: DCmini (2019). https://www.delmarconde.pt/?page_id=19. Accessed 31 Jan 2019
  4. 4.
    Domínguez-Brito, A.C., Valle-Fernández, B., Cabrera-Gámez, J., de Miguel, A.R., García, J.C.: A-TIRMA G2: an oceanic autonomous sailboat. In: Robotic Sailing 2015 - Proceedings of the 8th International Robotic Sailing Conference, pp. 3–13, September 2015.  https://doi.org/10.1007/978-3-319-23335-2_1
  5. 5.
    Elkaim, G.H.: System identification for precision control of a WingSailed GPS-guided catamaran. Ph.D. thesis, Stanford University (2001)Google Scholar
  6. 6.
    Elkaim, G.H., Boyce, C.L.: Experimental aerodynamic performance of a self-trimming wing-sail for autonomous surface vehicles. IFAC Proc. Vol. 40(17), 271–276 (2007). 7th IFAC Conference on Control Applications in Marine Systems.  https://doi.org/10.3182/20070919-3-HR-3904.00048
  7. 7.
    Holzgrafe, J.: Transverse stability problems of small autonomous sailing vessels. In: Robotic Sailing 2013 - Proceedings of the 6th International Robotic Sailing Conference, pp. 111–123, September 2013.  https://doi.org/10.1007/978-3-319-02276-5_9
  8. 8.
    INNOC - Österreichische Gesellschaft für innovative Computerwissenschaften: Robotic sailing (2018). https://www.roboticsailing.org/. Accessed 16 Nov 2018
  9. 9.
    Kimball, J.: Physics of Sailing. CRC Press - Taylor & Francis Group, Boca Raton (2010)Google Scholar
  10. 10.
    Leloup, R., Pivert, F.L., Thomas, S., Bouvart, G., Douale, N., Malet, H.D., Vienney, L., Gallou, Y., Roncin, K.: Breizh spirit, a reliable boat for crossing the atlantic ocean. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 55–69, August 2011.  https://doi.org/10.1007/978-3-642-22836-0_4
  11. 11.
    Lyon, C.A., Broeren, A.P., Giguère, P., Gopalarathnam, A., Selig, M.S.: Summary of Low-Speed Airfoil Data - Volume 3. SoarTech Publications, Virginia Beach (1997). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V3.pdf
  12. 12.
    Microtransat: The microtransat challenge. https://www.microtransat.org/index.php. Accessed 9 Nov 2018
  13. 13.
    Miller, P., Beeler, A., Cayaban, B., Dalton, M., Fach, C., Link, C., MacArthur, J., Urmenita, J., Medina, R.Y.: An easy-to-build, low-cost, high-performance sailbot. In: Robotic Sailing 2014 - Proceedings of the 7th International Robotic Sailing Conference, pp. 3–16, September 2014.  https://doi.org/10.1007/978-3-319-10076-0_1
  14. 14.
    Miller, P.H., Hamlet, M., Rossman, J.: Continuous improvements to USNA SailBots for inshore racing and offshore voyaging. In: Robotic Sailing 2012 - Proceedings of the 5th International Robotic Sailing Conference, September 2012.  https://doi.org/10.1007/978-3-642-33084-1_5
  15. 15.
    Neal, M., Sauzé, C., Thomas, B., Alves, J.C.: Technologies for autonomous sailing: wings and wind sensors. In: Proceedings of the 2nd International Robotic Sailing Conference, pp. 23–30, July 2009Google Scholar
  16. 16.
    Olson, S. (ed.): Autonomy on Land and Sea and in the Air and Space: Proceedings of a Forum. The National Academies Press, Washington, DC (2018).  https://doi.org/10.17226/25168
  17. 17.
    SailBot: Sailbot—international robotic sailing regatta (2018). https://www.sailbot.org/. Accessed 16 Nov 2018
  18. 18.
    Sauzé, C., Neal, M.: An autonomous sailing robot for ocean observation. In: Proceedings of the 7th Towards Autonomous Robotic Systems (TAROS) Conference, pp. 190–197, September 2006Google Scholar
  19. 19.
    Sauzé, C., Neal, M.: Design considerations for sailing robots performing long term autonomous oceanography. In: Proceedings of the International Robotic Sailing Conference, pp. 21–29, May 2008Google Scholar
  20. 20.
    Sauzé, C., Neal, M.: MOOP: a miniature sailing robot platform. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 39–53, August 2011.  https://doi.org/10.1007/978-3-642-22836-0_3
  21. 21.
    Schlaefer, A., Beckmann, D., Heinig, M., Bruder, R.: A new class for robotic sailing: the robotic racing micro magic. In: Robotic Sailing - Proceedings of the 4th International Robotic Sailing Conference, pp. 71–84, August 2011.  https://doi.org/10.1007/978-3-642-22836-0_5
  22. 22.
    Selig, M.S., Donovan, J.F., Fraser, D.B.: Airfoils at Low Speeds. H.A. Stokely, Virginia Beach (1989). https://m-selig.ae.illinois.edu/uiuc_lsat/Airfoils-at-Low-Speeds.pdf
  23. 23.
    Selig, M.S., Guglielmo, J.J., Broeren, A.P., Giguère, P.: Summary of Low-Speed Airfoil Data - Volume 1. SoarTech Publications, Virginia Beach (1995). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V1.pdf
  24. 24.
    Selig, M.S., Lyon, C.A., Giguère, P., Ninham, C.P., Guglielmo, J.J.: Summary of Low-Speed Airfoil Data - Volume 2. SoarTech Publications, Virginia Beach (1996). https://m-selig.ae.illinois.edu/uiuc_lsat/Low-Speed-Airfoil-Data-V2.pdf
  25. 25.
    Silva, M.F., Friebe, A., Malheiro, B., Guedes, P., Ferreira, P., Waller, M.: Rigid wing sailboats: a state of the art survey. Ocean Eng. 187, 106–150 (2019). http://www.sciencedirect.com/science/article/pii/S0029801819303294
  26. 26.
    Springer, P.J.: Outsourcing War to Machines - The Military Robotics Revolution. Praeger Security International, Santa Barbara (2018)Google Scholar
  27. 27.
    Stelzer, R.: Autonomous sailboat navigation - novel algorithms and experimental demonstration. Ph.D. thesis, De Montfort University (2012)Google Scholar
  28. 28.
    Tools, A.: Airfoil tools (2018). http://airfoiltools.com/. Accessed 4 Feb 2019
  29. 29.
    Tools, A.: Airfoil tools (2018). http://airfoiltools.com/airfoil/details?airfoil=e169-il#polars. Accessed 4 Feb 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manuel F. Silva
    • 1
    • 2
    Email author
  • Benedita Malheiro
    • 1
    • 2
  • Pedro Guedes
    • 1
  • Paulo Ferreira
    • 1
  1. 1.ISEP/PPorto, School of EngineeringPolytechnic of PortoPortoPortugal
  2. 2.INESC TECPortoPortugal

Personalised recommendations