Advertisement

Synthetic Chemicals: Major Component of Plant Disease Management

  • Imran Ul Haq
  • Muhammad Kaleem Sarwar
  • Anjum Faraz
  • Muhammad Zunair Latif
Chapter
  • 10 Downloads
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)

Abstract

Direct protection using synthetic chemicals is one of the basic principles of plant disease management. Historical perspectives of using chemicals for plant diseases control Include application of effective methods for controlling plant diseases. Fungicides, Bactericides and Nematicides are applied through different methods such foliar, slurry, drench, paste etc.). Fungicides or Fungistatics, can be classified based on mode of action, usage and composition. Limitations of pesticide usage occur in plant disease management, due to health hazards and pesticide impact on the environment. Insurgence of fungicidal resistance in plant pathogens is also a significant threat. Efficacy of chemicals compounds is also affected by climate changes. Recent trends in the development and use of synthetic chemicals (broad spectrum and new chemistry fungicides) in plant disease control Consider a comparison between pesticides and alternative plant disease control methods, fungicide marketing policies and procedures.

Keywords

Foliar fungicides Synthetic fungicides Viricides Fungicidal resistance 

References

  1. Agrios, G. N. (2005). Plant pathology (5th ed., pp. 79–103). Burlington: Elsevier Academic Press.Google Scholar
  2. AgroSciences. (2008). Internal market research based on panel data supplied by Agrobase-Logigram. Archamps, France.Google Scholar
  3. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (2002). Molecular biology of the cell. London: Garland Publishing, Inc.Google Scholar
  4. Al-Khatib, M. T., Shequarah, M. N., & Alsmadi, S. A. (2017). Control of soil-borne pathogens by soil fumigation with paraformaldehyde (fogidesfarm) as alternative to methyl bromide. Asian Journal of Plant Pathology, 11, 81–88.CrossRefGoogle Scholar
  5. Appel, D. N., & Kurdyla, T. (1992). Intravascular injection with propiconazole in live oak for oak wilt control. Plant Disease, 76, 1120–1124.CrossRefGoogle Scholar
  6. Bartett, D. W., Clough, J. M., Godfrey, C. R., Godwin, J. R., Hall, A. A., Heaney, S. P., & Maund, S. J. (2001). Understanding the strobilurin fungicides. Pesticide Outlook, 12, 143–148.CrossRefGoogle Scholar
  7. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.PubMedCrossRefGoogle Scholar
  8. Behrens, H. (1957). Archäoligische überlegungen zur frage nach dem entstehungsgebiet der landwirtschaft. In Beträge zur frühgeschichte der landwirtschaft S11. Berlin: Akademie-Verlag.Google Scholar
  9. Bernard, B. K., & Gordon, E. B. (2000). An evaluation of the common mechanism approach to the Food Quality Protection Act: Captan and four related fungicides, a practical example. International Journal of Toxicology, 19, 43–61.CrossRefGoogle Scholar
  10. Bittencourt, S. R. M. D., Menten, J. O. M., Araki, C. A. D. S., Moraes, M. H. D. D., Rugai, A. D. R., Dieguez, M. J., & Vieira, R. D. (2007). Eficiency of the fungicide carboxin+ thiram in peanut seed treatment. Revista Brasileira de Sementes, 29, 214–222.CrossRefGoogle Scholar
  11. Bonde, M. R., Peterson, G. L., Rizvi, S. A., & Smilanick, J. L. (1995). Myclobutanil as a curative agent for chrysanthemum white rust. Plant Disease, 79, 500–505.CrossRefGoogle Scholar
  12. Brandt, U., Schubert, J., Geck, P., & von Jagow, G. (1992). Uncoupling activity and physicochemical properties of derivatives of fluazinam. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1101, 41–47.CrossRefGoogle Scholar
  13. Brent, K. J., & Hollomon, D. W. (1995). Fungicide resistance in crop pathogens: How can it be managed (FRAC Monograph No. 1, 2nd Rev. Ed., pp. 1–48). Brussels: Fungicide Resistance Action Committee. Monograph 1 GCPF, FRAC.Google Scholar
  14. Brent, K. J., & Hollomon, D. W. (1998). Fungicide resistance: The assessment of risk (pp. 1–48). Brussels: Global Crop Protection Federation.Google Scholar
  15. Brent, K. J., & Hollomon, D. W. (2007a). Fungicide resistance in crop pathogens: How can it be managed? (2nd Rev. Ed.). Online. Brussels: Fungicide Resistance Action Committee (FRAC). Crop Life Int.Google Scholar
  16. Brent, K. J., & Hollomon, D. W. (2007b). Fungicide resistance: The assessment of risk (Fungicide Resistance Action Committee FRAC monograph no. 2, pp. 7–8). Aimprint UK.Google Scholar
  17. Brown, J. K., & Simpson, C. G. (1994). Genetic analysis of DNA fingerprints and virulences in Erysiphe graminis f.sp. hordei. Current Genetics, 26, 172–178.PubMedCrossRefGoogle Scholar
  18. Bullis, B. L., & Lemire, B. D. (1994). Isolation and characterization of the Saccharomyces cerevisiae SDH4 gene encoding a membrane anchor subunit of succinate dehydrogenase. Journal of Biological Chemistry, 269, 6543–6549.PubMedPubMedCentralGoogle Scholar
  19. Calzarano, F., Di Marco, S., & Cesari, A. (2004). Benefit of fungicide treatment after trunk renewal of vines with different types of esca necrosis. Phytopathologia Mediterranea, 43, 116–124.Google Scholar
  20. Carr, J. F., Gregory, S. T., & Dahlberg, A. E. (2005). Severity of the streptomycin resistance and streptomycin dependence phenotypes of ribosomal protein S12 of Thermus thermophilus depends on the identity of highly conserved amino acid residues. Journal of Bacteriology, 187, 3548–3550.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carson, R. (1962). Silent spring.Google Scholar
  22. Carter, W. W. (1943). A promising new soil amendment and disinfectant. Science, 97, 383–384.PubMedCrossRefGoogle Scholar
  23. Case, D. R., Bell, C. L., & Steinway, D. M. (2011). Environmental law handbook. Rockville: Government Institutes.Google Scholar
  24. Chauhan, M. S., Yadav, J. P. S., & Gangopadhyay, S. (1988). Chemical control of soilborne fungal pathogen complex of seedling cotton. International Journal of Pest Management, 34, 159–161.Google Scholar
  25. Chen, S. K., Edwards, C. A., & Subler, S. (2001). Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology and Biochemistry, 33, 1971–1980.CrossRefGoogle Scholar
  26. Cleland, J. (2013). World population growth; past, present and future. Environmental and Resource Economics, 55(4), 543–554.CrossRefGoogle Scholar
  27. Cools, H. J., & Fraaije, B. A. (2008). Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola. Pest Management Science: Formerly Pesticide Science, 64(7), 681–684.CrossRefGoogle Scholar
  28. Cycoń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration & Biodegradation, 64(4), 316–323.CrossRefGoogle Scholar
  29. Daignan-Fornier, B., Valens, M., Lemire, B. D., & Bolotin-Fukuhara, M. (1994). Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. Journal of Biological Chemistry, 269(22), 15469–15472.PubMedPubMedCentralGoogle Scholar
  30. Dal Maso, E., Cocking, J., & Montecchio, L. (2014). Efficacy tests on commercial fungicides against ash dieback in vitro and by trunk injection. Urban Forestry & Urban Greening, 13(4), 697–703.CrossRefGoogle Scholar
  31. Davidse, L. C. (1986). Benzimidazole fungicides: Mechanism of action and biological impact. Annual Review of Phytopathology, 24, 43–65.CrossRefGoogle Scholar
  32. Dawson, W. O. (1984). Effects of animal antiviral chemicals on plant viruses [tobacco mosaic virus, cowpea chlorotic mottle virus]. Phytopathology, 74, 211–213.CrossRefGoogle Scholar
  33. De Cal, A., Martinez-Treceno, A., Salto, T., López-Aranda, J. M., & Melgarejo, P. (2005). Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Applied Soil Ecology, 28, 47–56.CrossRefGoogle Scholar
  34. Deising, H. B., Reimann, S., Peil, A., & Weber, W. E. (2002). Disease management of rusts and powdery mildews. In F. Kempken (Ed.), The Mycota XI. Application in agriculture (pp. 243–269). Berlin: Springer.CrossRefGoogle Scholar
  35. Di Marco, S., Mazzullo, A., Cesari, C. F., & A. (2000). Control of esca: Status and perspectives. Phytopathologia Mediterranea, 39, 232–240.Google Scholar
  36. Duggar, B. M., & Armstrong, J. K. (1925). The effect of treating the virus of tobacco mosaic with the juices of various plants. Annals of the Missouri Botanical Garden, 12, 359–366.CrossRefGoogle Scholar
  37. Düker, A., & Kubiak, R. (2011). Stem injection of prohexadione carboxylic acid to protect blossoms of apple trees from fire blight infection (Erwinia amylovora). Journal of Plant Diseases and Protection, 118, 156–160.CrossRefGoogle Scholar
  38. Dula, T., Kappes, E. M., Horvath, A., & Rabai, A. (2007). Preliminary trials on treatment of esca-infected grapevines with trunk injection of fungicides. Phytopathologia Mediterranea, 46, 91–95.Google Scholar
  39. El-Hamalawi, Z. A., Menge, J. A., & Adams, C. J. (1995). Methods of fosetyl-Al application and phosphonate levels in avocado tissue needed to control stem canker caused by Phytophthora citricola. Plant Disease, 79, 770–778.CrossRefGoogle Scholar
  40. Fishel, F. M. (2005). Pesticide toxicity profile: Neonicotinoid pesticides. IFAS, University of Florida.Google Scholar
  41. Fisher, D. J., & Hayes, A. L. (1982). Mode of action of the systemic fungicides furalaxyl, metalaxyl and ofurace. Pesticide Science, 13, 330–339.CrossRefGoogle Scholar
  42. Freeman, S., Nizani, Y., Dotan, S., Even, S., & Sando, T. (1997). Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse, and field conditions. Plant Disease, 81, 749–752.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fujii, K., & Takamura, S. (1998). Pyricut® (difulmetorim, UBF-002EC) – A new fungicide for ornamental use. Agrochemicals Japan, 72, 14–15.Google Scholar
  44. Galasso, G. J. (1984). Future prospects for antiviral agents and new approaches. Journal of Antimicrobial Chemotherapy, 14(Suppl_A), 127–136.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gisi, U., Sierotzki, H., Cook, A., & McCaffery, A. (2002). Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 58, 859–867.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Godfrey, G. H. (1935). Experiments on the control of the root-knot nematode in the field with chloropicrin and other chemicals. Phytopathology, 25, 67–90.Google Scholar
  47. Goodman, R. N. (1959). The influence of antibiotics on plants and plant disease control. In H. S. Goldberg (Ed.), Antibiotics: Their chemistry and non-medical uses (pp. 322–421). Princeton: Van Nostrand.Google Scholar
  48. Gowen, S. R. (1997). Chemical control of nematodes: Efficiency and side-effects. FAO Plant Production and Protection Paper (FAO). http://www.fao.org/3/v9978e/v9978e08.htm
  49. Guest, D. I., Anderson, R. D., Foard, H. J., Phillips, D., Worboys, S., & Middleton, R. M. (1994). Long-term control of Phytophthora diseases of cocoa using trunk-injected phosphonate. Plant Pathology, 43, 479–492.CrossRefGoogle Scholar
  50. Guo, Z. J., Miyoshi, H., Komyoji, T., Haga, T., & Fujita, T. (1991). Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2, 6-dinitro-4-trifluoromethylphenyl) -5-trifluoromethyl-2-pyridinamine]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1056, 89–92.CrossRefGoogle Scholar
  51. Gupta, V. K. (1977). Possible use of carbendazim in the control of Dematophora root rot of apple. Indian Phytopathology, 30, 527–531.Google Scholar
  52. Gupta, K., Bishop, J., Peck, A., Brown, J., Wilson, L., & Panda, D. (2004). Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin. The Biochemist, 43, 6645–6655.CrossRefGoogle Scholar
  53. Hagiwara, D., Matsubayashi, Y., Marui, J., Furukawa, K., Yamashino, T., Kanamaru, K., et al. (2007). Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Bioscience, Biotechnology, and Biochemistry, 71, 844–847.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hague, N. G. M., & Gowen, S. R. (1987). Chemical control of nematodes. In R. H. Brown & B. R. Kerry (Eds.), Principles and practice of nematode control in crops (pp. 131–178). Sydney: Academic.Google Scholar
  55. Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7, 133–141.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hall, R. A., Lenardon, M. D., Alvarez, F. J., Nogueira, F. M., Mukaremera, L., & Gow, N. A. R. (2013). The Candida albicans cell wall: Structure and role in morphogenesis and immune recognition. The Fungal Cell Wall, 1–26.Google Scholar
  57. Halling-Sørensen, B., Sengeløv, G., & Tjørnelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 42, 263–271.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hansen, A. J., & Stace-Smith, R. (1989). Antiviral chemicals for plant disease control. Critical Reviews in Plant Sciences, 8, 45–88.CrossRefGoogle Scholar
  59. Herd, G. W., & Phillips, A. J. L. (1988). Control of seed-borne Sclerotinia sclerotiorum by fungicidal treatment of sunflower seed. Plant Pathology, 37, 202–205.CrossRefGoogle Scholar
  60. Hewitt, H. G. (1998). Fungicides in crop protection. New York: CAB International.Google Scholar
  61. Hewitt, G. (2000). New modes of action of fungicides. Pesticide Outlook, 11, 28–32.CrossRefGoogle Scholar
  62. Hoffman, L. E., & Wilcox, W. F. (2003). Factors influencing the efficacy of myclobutanil and azoxystrobin for control of grape black rot. Plant Disease, 87, 273–281.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hollomon, D. W. (2015a). Fungicide resistance: 40 years on and still a major problem. In Fungicide resistance in plant pathogens (pp. 3–11). Tokyo: Springer.  https://doi.org/10.1007/978-4-431-55642-8.CrossRefGoogle Scholar
  64. Hollomon, D. W. (2015b). Fungicide resistance: Facing the challenge – A review. Plant Protection Science, 51, 170–176.CrossRefGoogle Scholar
  65. Hollomon, D. W., & Chamberlain, K. (1981). Hydroxypyrimidine fungicides inhibit adenosine deaminase in barley powdery mildew. Pesticide Biochemistry and Physiology, 16, 158–169.CrossRefGoogle Scholar
  66. Hoopen, G. M., & Krauss, U. (2006). Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Protection, 25, 89–107.CrossRefGoogle Scholar
  67. Inglis, D. A., Powelson, M. L., & Dorrance, A. E. (1999). Effect of registered potato seed piece fungicides on tuber-borne Phytophthora infestans. Plant Disease, 83, 229–234.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ishii, H., & Holloman, D. W. (Eds.). (2015). Fungicide resistance in plant pathogens. Tokyo: Springer.  https://doi.org/10.1007/978-4-431-55642-8.CrossRefGoogle Scholar
  69. Ishii, H., Zhen, F., Hu, M., Li, X., & Schnabel, G. (2016). Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species. Pest Management Science, 72, 1844–1853.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ivic, D. (2010). Curative and eradicative effects of fungicides. In O. Clarisse (Ed.), Fungicides. IntechOpen.  https://doi.org/10.5772/13766.Google Scholar
  71. Iwaki, T., Iefuji, H., Hiraga, Y., Hosomi, A., Morita, T., Giga-Hama, Y., & Takegawa, K. (2008). Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe. Microbiology, 154, 830–841.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Johnson, M. O., & Godfrey, G. H. (1932). Chloropicrin for nematode control. Industrial & Engineering Chemistry, 24, 311–313.CrossRefGoogle Scholar
  73. Joseph-Horne, T. I. M., Hollomon, D. W., & Wood, P. M. (2001). Fungal respiration: A fusion of standard and alternative components. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1504, 179–195.CrossRefGoogle Scholar
  74. Kamimura, S., Nishikawa, M., & Takahi, Y. (1976). Mode of action of soil fungicide hymexazol, 3-hydroxy-5-methylisoxazole, on Fusarium oxysporum f. cucumerinum. Japanese Journal of Phytopathology, 42, 242–252.CrossRefGoogle Scholar
  75. Kanadani, G., Date, H., & Nasu, H. (1998). Effect of fluazinam soil-drench on white root rot of grapevine. Japanese Journal of Phytopathology, 64, 139–141.CrossRefGoogle Scholar
  76. Kawai, M., & Yamagishi, J. I. (2009). Mechanisms of action of acriflavine: Electron microscopic study of cell wall changes induced in Staphylococcus aureus by acriflavine. Microbiology and Immunology, 53, 481–486.PubMedCrossRefGoogle Scholar
  77. Kim, J. H., Campbell, B. C., Mahoney, N., Chan, K. L., Molyneux, R. J., & May, G. S. (2007). Enhancement of fludioxonil fungicidal activity by disrupting cellular glutathione homeostasis with 2, 5-dihydroxybenzoic acid. FEMS Microbiology Letters, 270, 284–290.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kislev, M. E. (1982). Stem rust of wheat 3300 years old found in Israel. Science, 216, 993–994.PubMedCrossRefGoogle Scholar
  79. Klittich, C. J. (2008). Milestones in fungicide discovery: Chemistry that changed agriculture. Plant Health Progress, 9, 31.CrossRefGoogle Scholar
  80. Koo, B. S., Park, H., Kalme, S., Park, H. Y., Han, J. W., Yeo, Y. S., et al. (2009). α-and β-tubulin from Phytophthora capsici KACC 40483: Molecular cloning, biochemical characterization, and antimicrotubule screening. Applied Microbiology and Biotechnology, 82, 513–524.CrossRefGoogle Scholar
  81. Kretschmer, M. (2012). Emergence of multi-drug resistance in fungal pathogens: A potential threat to fungicide performance in agriculture. In T. S. Thind (Ed.), Fungicide resistance in crop protection: Risk and management (pp. 251–267). Oxfordshire: CABI.CrossRefGoogle Scholar
  82. Kulka, M., & Von Schmeling, B. (1987). Carboxin fungicides and related compounds. In H. Lyr (Ed.), Modern selective fungicides: Properties, applications, mechanisms of action (pp. 119–131). London: VEB Gustav Fisher Verlag, Jena and Longman Group.Google Scholar
  83. Kumar, S., & Gupta, O. M. (2012). Expanding dimensions of plant pathology. JNKVV Research Journal, 46, 286–293.Google Scholar
  84. Lanier, G. N. (1987). Fungicides for Dutch elm disease: Comparative evaluation of commercial products. Journal of Arboriculture, 13, 189–195.Google Scholar
  85. Leadbeater, A. (2012). The role of FRAC in resistant management. Journal of Mycology Plant Pathology, 42, 25.Google Scholar
  86. Leadbeater, A. (2015). Recent developments and challenges in chemical disease control – A review. Plant Protection Science, 51(4), 163–169.CrossRefGoogle Scholar
  87. Linderman, R. G., & Davis, E. A. (2008). Eradication of Phytophthora ramorum and other pathogens from potting medium or soil by treatment with aerated steam or fumigation with metam sodium. HortTechnology, 18, 106–110.CrossRefGoogle Scholar
  88. List, F. C. (2018). Fungicides sorted by mode of action (including FRAC Code numbering). Fungicides market. (Chloronitriles, Dithiocarbamates, Triazoles, Strobilurins, Benzimidazoles, Mancozeb and others) for fruit vegetables, oilseeds pulses, cereals grains and other crops: Global industry perspective, comprehensive analysis and forecast, 2016–2022. https://www.zionmarketresearch.com/report/fungicides
  89. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (Eds.). (2000). Molecular cell biology (4th ed.). New York: W. H. Freeman. ISBN:10: 0-7167-3136-3.Google Scholar
  90. Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863.CrossRefGoogle Scholar
  91. Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, D. P. (2008). Brock biology of microorganisms, 12th Ed. International Microbiology, 11, 65–73.Google Scholar
  92. Mahal, M. F. (2014). Effects of fungicides and plant extracts on seed germination and seed associated mycoflora of Lens arietinum L. and Lathyrus sativus. Journal of Bio-Science, 22, 101–110.CrossRefGoogle Scholar
  93. Maienfisch, P., & Stevenson, T. M. (2015). Modern agribusiness–markets, companies, benefits and challenges. In Discovery and synthesis of crop protection products (pp. 1–13). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  94. Mappes, D., & Hiepko, G. (1984). New possibilities for controlling root diseases of plantation crops. Mededelingen van de Faculteit Landbouwwetenschappen. Rijksuniversiteit Gent, 49, 283–292.Google Scholar
  95. Martínez J. A. (2012). Natural fungicides obtained from plants. In: Fungicides for plant and animal diseases. InTech. www.intechopen.com.  https://doi.org/10.5772/26336.Google Scholar
  96. Mathews, D. J. (1919). Report of the work of the W. B. Randall research assistant. Nursery and Market Garden Industry Development Society, Ltd. Experiment and Research Station, Cheshunt, Herts, U.K. Annual Report, 5, 18–21.Google Scholar
  97. Matsson, M., & Hederstedt, L. (2001). The carboxin-binding site on Paracoccus denitrificans succinate: Quinone reductase identified by mutations. Journal of Bioenergetics and Biomembranes, 33, 99–105.PubMedCrossRefGoogle Scholar
  98. Maude, R. B. (1996). Seedborne diseases and their control: Principles and practice. Wallingford: CAB International.Google Scholar
  99. McBeth, C. W., & Bergeson, G. B. (1955). 1, 2-dibromo-3-chloropropane: A new nematocide. Plant Disease Reporter, 39, 223–225.Google Scholar
  100. McCarroll, N. E., Protzel, A., Ioannou, Y., Stack, H. F., Jackson, M. A., Waters, M. D., & Dearfield, K. L. (2002). A survey of EPA/OPP and open literature on selected pesticide chemicals: III. Mutagenicity and carcinogenicity of benomyl and carbendazim. Mutation Research/Reviews in Mutation Research, 512, 1–35.CrossRefGoogle Scholar
  101. McCoy, R. E. (1982). Use of tetracycline antibiotics to control yellows diseases. Plant Disease, 66, 539–542.CrossRefGoogle Scholar
  102. McDougall, P. (2010). The cost of new agrochemical product discovery, development and registration in 1995, 2000 and 2005–8. Available at: http://www.croplife.org/view_document.aspx?docId=2478
  103. McDougall, P. (2014). Trends in industry research and development (AgriFutura No 174, April 2014). Available at: www.phillipsmcdougall.com
  104. McDougall, P. (2018a). Evolution of the crop protection industry since 1960. Available at: www.Agribusinessintelligence.informa.com
  105. McDougall, P. (2018b, June). The global crop protection industry in 2017. AgrAspire. Available at: www.Agribusinessintelligence.informa.com
  106. McGrath, M. T. (2004). What are fungicides. The Plant Health Instructor.  https://doi.org/10.1094/PHI-I-2004-0825-01. Updated 2016.
  107. McManus, P. S., & Stockwell, V. O. (2001). Antibiotic use for plant disease management in the United States. Plant Health Progress, 2, 14.CrossRefGoogle Scholar
  108. McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443–465.CrossRefGoogle Scholar
  109. Milenkovski, S., Baath, E., Lindgren, P. E., & Berglund, O. (2010). Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology, 19, 285–294.CrossRefGoogle Scholar
  110. Miller, M. L. (2014). Pesticides. In Case et al. (Eds.), Environmental law handbook (22nd ed., pp. 870–875). Lanham: Bernan Press.Google Scholar
  111. Moore, D., Robson, G. D., & Trinci, A. P. (2011). 21st century guidebook to fungi with CD. Cambridge: Cambridge University Press.Google Scholar
  112. Morton, V., & Staub, T. (2008). A short history of fungicides. St. Paul: APSnet Features.CrossRefGoogle Scholar
  113. Motoba, K., Uchida, M., & Tada, E. (1988). Mode of antifungal action and selectivity of flutolanil. Agricultural and Biological Chemistry, 52, 1445–1449.Google Scholar
  114. Mueller, D., Bradley, C. A., & Nielsen, J. (2008). Field crop fungicides for the North Central United States. Ames: Agricultural Experiment Station, Iowa State University.Google Scholar
  115. Nabi, S. U., Raja, W. H., Dar, M. S., Kirmani, S. N., & Magray, M. M. (2017). New generation fungicides in disease management of horticultural crops. Indian Horticulture Journal, 7, 1–07.Google Scholar
  116. NPIC (National Pesticide Information Center). (2018). International pesticide regulations. http://npic.orst.edu/reg/intreg.html
  117. Ochiai, N., Fujimura, M., Oshima, M., Motoyama, T., Ichiishi, A., Yamada-Okabe, H., & Yamaguchi, I. (2002). Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Bioscience, Biotechnology, and Biochemistry, 66, 2209–2215.PubMedCrossRefGoogle Scholar
  118. Old, D., & Gorini, L. (1965). Amino acid changes provoked by streptomycin in a polypeptide synthesized in vitro. Science, 150, 1290–1292.PubMedCrossRefGoogle Scholar
  119. Parker, J. E., Warrilow, A. G., Cools, H. J., Martel, C. M., Nes, W. D., Fraaije, B. A., et al. (2011). Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals. Applied and Environmental Microbiology, 77(4), 1460–1465.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pelaez, V., da Silva, L. R., & Araújo, E. B. (2013). Regulation of pesticides: A comparative analysis. Science and Public Policy, 40, 644–656.CrossRefGoogle Scholar
  121. Prevost, B. (1807). Memoir on the immediate cause of caries or coal of the bles, and several. Other diseases of plants, and on the condoms of caries. Paris: Bernard Quai des Augustins. [Translation by Keitt G.W. (1939). Memoir on the immediate cause of bunt or smut of wheat, and of several other diseases of plants, and on preventives of bunt. Menasha: American Phytopathological Society, Phytopathological Classics No. 6].Google Scholar
  122. Quak, F. (1961). Heat treatment and substances inhibiting virus multiplication in meristem culture to obtain virus-free plants. Advances in Horticultural Science Application, 1, 144–148.Google Scholar
  123. Radzuhn, B., & Lyr, H. (1984). On the mode of action of the fungicide etridiazole. Pesticide Biochemistry and Physiology, 22, 14–23.CrossRefGoogle Scholar
  124. Rathinasamy, K., & Panda, D. (2006). Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. The FEBS Journal, 273, 4114–4128.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Rebollar-Alviter, A., Madden, L. V., & Ellis, M. A. (2007). Pre-and post-infection activity of azoxystrobin, pyraclostrobin, mefenoxam, and phosphite against leather rot of strawberry, caused by Phytophthora cactorum. Plant Disease, 91, 559–564.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Reimann, S., & Deising, H. B. (2005). Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Applied and Environmental Microbiology, 71, 3269–3275.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Research and Market. (2018). Crop protection chemicals market: Global industry trends, share, size, growth, opportunity and forecast 2018–2023. https://www.prnewswire.com/news-releases/global-crop-protection-chemicals-herbicides-fungicides-insecticides-and-others-market-to-2023-300745519.html
  128. Rhoades, W. C. (1963). The history and use of agricultural chemicals. Florida Entomologist, 46, 275–277.CrossRefGoogle Scholar
  129. Rohrman, D. F. (1968). The law of pesticides: Present and future. Journal of Public Law, 17, 351.Google Scholar
  130. Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea – History of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.CrossRefGoogle Scholar
  131. Runkle, J., Flocks, J., Economos, J., & Dunlop, A. L. (2017). A systematic review of Mancozeb as a reproductive and developmental hazard. Environment International, 99, 29–42.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Russell, P. E. (2005). A century of fungicide evolution. Journal of Agricultural Science, 143, 11–25.CrossRefGoogle Scholar
  133. Savary, S., Teng, P. S., Willocquet, L., & Nutter, F. W., Jr. (2006). Quantification and modeling of crop losses: A review of purposes. Annual Review of Phytopathology, 44, 89–112.CrossRefGoogle Scholar
  134. Schacht, H. (1859). About some enemies and diseases of the sugar beet. Journal of the Association for the Beet Sugar Industry in the Zollverein, 9, 239–250.Google Scholar
  135. Scheffer, R. J., Voeten, J. G. W. F., & Guries, R. P. (2008). Biological control of Dutch elm disease. Plant Disease, 92, 192–200.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Schierow, L. J., & Esworthy, R. (2004). Pesticide law: A summary of the statutes. Washington, DC: Congressional Research Service, Library of Congress.Google Scholar
  137. Seiler, J. P. (1975). Toxicology and genetic effects of benzimidazole compounds. Mutation Research/Reviews in Genetic Toxicology, 32, 151–167.CrossRefGoogle Scholar
  138. Shtienberg, D., Zilberstaine, M., Oppenheim, D., Herzog, Z., Manulis, S., Shwartz, H., & Kritzman, G. (2001). Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica, 29, 143–154.CrossRefGoogle Scholar
  139. Shurtleff, M. C., Pelczar, M. J., Kelman, A., & Pelczar, R. M. (2018). Plant disease. Encyclopædia Britannica, Inc. https://www.britannica.com/science/plant-disease
  140. Sikora, R. A., & Hartwig, J. (1991). Mode-of-action of the carbamate nematicides cloethocarb, aldicarb and carbofuran on Heterodera schachtii: 2. Systemic activity. Rev Nématol, 14, 531–536.Google Scholar
  141. Smith, D. L., Garrison, M. C., Hollowell, J. E., Isleib, T. G., & Shew, B. B. (2008). Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of Sclerotinia blight of peanut. Crop Protection, 27, 823–833.CrossRefGoogle Scholar
  142. Spiegel, J., & Stammler, G. (2006). Baseline sensitivity of Monilinia laxa and M. fructigena to pyraclostrobin and boscalid. Journal of Plant Diseases and Protection, 113(5), 199–206.CrossRefGoogle Scholar
  143. Statista. (2016). Fungicide market value worldwide from 2014 to 2023 (in billion U.S. dollars). https://www.statista.com/statistics/586532/fungicide-market-value-worldwide
  144. Sudisha, J., Amruthesh, K. N., Deepak, S. A., Shetty, N. P., Sarosh, B. R., & Shetty, H. S. (2005). Comparative efficacy of strobilurin fungicides against downy mildew disease of pearl millet. Pesticide Biochemistry and Physiology, 81, 188–197.CrossRefGoogle Scholar
  145. Sukul, P., & Spiteller, M. (2000). Metalaxyl: Persistence, degradation, metabolism, and analytical methods. Reviews of Environmental Contamination and Toxicology, 164, 1–26.PubMedPubMedCentralGoogle Scholar
  146. Tadmor, Z., Sachs, K., Chet, I., Spiegel, Y., Ravina, I., Mano, G., & Yannai, S. (2005). An innovative approach: The use of di-nitrogen tetroxide for soil fumigation. Biosystems Engineering, 91, 413–419.CrossRefGoogle Scholar
  147. Tanaka, C., & Izumitsu, K. (2010). Two-component signaling system in filamentous fungi and the mode of action of dicarboximide and phenylpyrrole fungicides. In Fungicides. IntechOpen.Google Scholar
  148. Taylor, A. L. (2003). Nematocides and nematicides – A history. Nematropica, 33, 225–232.Google Scholar
  149. Taylor, P. A., & Washington, W. S. (1984). Curative treatments for Phytophthora cactorum in peach trees using metalaxyl and phosethyl Al. Australasian Plant Pathology, 13, 31–33.CrossRefGoogle Scholar
  150. Thorne, G., & Jensen, V. (1946). A preliminary report on the control of sugar beet nematode with two chemicals, DD and Dowfume W15. In Proceedings of the American Society of Sugar Beet Technologist, pp. 322–326.Google Scholar
  151. Tomlin, C., & British Crop Protection Council. (2006). The e-pesticide manual: A world compendium. Alton: BCPC.Google Scholar
  152. Utkhede, R. S. (1987). Chemical and biological control of crown and root rot of apple caused by Phytophthora cactorum. Canadian Journal of Plant Pathology, 9, 295–300.CrossRefGoogle Scholar
  153. Vagi, P., Preininger, E., Kovacs, G. M., Kristof, Z., Boka, K., & Böddi, B. (2013). Structure of plants and fungi (pp. 1–109). Eötvös Loránd University, Budapest.Google Scholar
  154. Van Woerkom, A. H., Aćimović, S. G., Sundin, G. W., Cregg, B. M., Mota-Sanchez, D., Vandervoort, C., & Wise, J. C. (2014). Trunk injection: An alternative technique for pesticide delivery in apples. Crop Protection, 65, 173–185.CrossRefGoogle Scholar
  155. Vargas-Pérez, I., Sánchez, O., Kawasaki, L., Georgellis, D., & Aguirre, J. (2007). Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryotic Cell, 6, 1570–1583.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Vega, B., & Dewdney, M. M. (2015). Sensitivity of Alternaria alternata from citrus to boscalid and polymorphism in iron-sulfur and in anchored membrane subunits of succinate dehydrogenase. Plant Disease, 99, 231–239.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Veloukas, T., Bardas, G. A., Karaoglanidis, G. S., & Tzavella-Klonari, K. (2007). Management of tomato leaf mould caused by Cladosporium fulvum with trifloxystrobin. Crop Protection, 26, 845–851.CrossRefGoogle Scholar
  158. Vincelli, P. (2002). Q o I (strobilurin) fungicides: Benefits and risks. Plant Health Instructor.Google Scholar
  159. Wilcox, W. F. (1990). Postinfection and antisporulant activities of selected fungicides in control of blossom blight of sour cherry caused by Monilinia fructicola. Plant Disease, 74, 808–811.CrossRefGoogle Scholar
  160. Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicide: Modes of action and possible impact on non-target microorganisms. ISRN Ecology, 2011, 130289.CrossRefGoogle Scholar
  161. Yang, H., Tong, J., Lee, C. W., Ha, S., Eom, S. H., & Im, Y. J. (2015). Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nature Communications, 6, 6129.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yildiz, M. (2017). Crop production for increasing population. Journal of Plant Genetics and Breeding, 1, e102.Google Scholar
  163. Yoshimi, A., Kojima, K., Takano, Y., & Tanaka, C. (2005). Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryotic Cell, 4, 1820–1828.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zhou, Y., Xu, J., Zhu, Y., Duan, Y., & Zhou, M. (2016). Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: Interfering with polymerization of monomeric tubulin but not polymerized microtubule. Phytopathology, 106, 807–813.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Imran Ul Haq
    • 1
  • Muhammad Kaleem Sarwar
    • 1
  • Anjum Faraz
    • 1
  • Muhammad Zunair Latif
    • 1
  1. 1.Department of Plant PathologyUniversity of Agriculture FaisalabadFaisalabadPakistan

Personalised recommendations