Conventional Plant Breeding Program for Disease Resistance

  • Ali Hassan Khan
  • Mariam Hassan
  • Muhammad Naeem Khan
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)


Disease resistance is of great concern for plant breeding programs. Diseases are a major yield-limiting factor, caused by many air born, soil born or waterborne microorganisms, which in fact are a risk for food security. Improving efficacy of management practices can increase yields, but only to a limited extent, whereas plant breeding as a technology increases yields to large extents. Advancements in new science and technology allow the development of tools whereas old ones are also refined. Most cost-effective and environment-friendly methods applied in disease resistance programs include adoption of conventional breeding approaches. There are two type of resistance, namely vertical (controlled by major genes) and horizontal (controlled by minor genes). Breeding programs change with respect to crops, diseases and pathogens. In spite of this, main objective is the accumulation of favorable gene(s) into cultivars, to deal with a given scenario. Selection, introduction, hybridization and screening are the main steps of a successful breeding program. Landraces, related species, mutations and wild relatives are the sources of resistance. They can be utilized for resistance introduction in commercial cultivars. Selection of resistant cultivar is the most robust and cheap method, allowing thereby introduction of resistant cultivar into a new region. Moreover, resistant cultivars are used to cross with local cultivars for introduction of resistance genes into them. The rapid evolution of phytopathogens and crops susceptibility pose severe issues, therefore disease resistance represents a complex aspect of any program. Being also affected by the environment it still represents a big challenge for breeders.


Backcross Polycross Recurrent selection Conventional breeding Synthetic varieties 


  1. Agrawal, R. A., Banerjee, S. K., Singh, M., & Katiyar, K. N. (1976). Resistance to insects in cotton.II. To pink bollworm, Pectinophora gossypiella (Saunders). Coton et Fibres Tropicales, 31, 217–221.Google Scholar
  2. Allard, R. W. (1960). Principles of plant breeding. New York: Wiley/Toppan. 485 pp.Google Scholar
  3. Aminu, K. C. (1940). Interspecific hybridization between Asiatic and new world cottons. Indian Journal of Agricultural Sciences, 10, 404–412.Google Scholar
  4. Anjum, Z. I., Hayat, K., Chalkin, S., Azhar, T. M., Shehzad, U., Ashraf, F., et al. (1986). Occurrence of an antifungal principle in the root extracts of a Bayoud-resistant date palm cultivar. Netherlands Journal of Plant Pathology, 92, 43–47.CrossRefGoogle Scholar
  5. Assef, G. M., Assari, K., & Vincent, E. J. (1986). Occurrence of an antifungal principle in the root extracts of a Bayoud-resistant date palm cultivar. Netherlands Journal of Plant Pathology, 92, 43–47.CrossRefGoogle Scholar
  6. Barnett, H., & Binder, F. (1973). The fungal host-parasite relationship. Annual Review of Phytopathology, 11, 273–292.CrossRefGoogle Scholar
  7. Bayles, R. A., Channell, M. H., & Stigwood, P. L. (1989). New races of Puccinia striiformis in the United Kingdom in 1988. Cereal Rusts Bulletin, 17, 20–23.Google Scholar
  8. Bennet, C. P. A., Hunt, P., & Asman, A. (1985). Association of a xylem-limited bacterium with Sumatra disease of cloves in Indonesia. Plant Pathology, 34, 487–494.CrossRefGoogle Scholar
  9. Boswell, K. F., Dallwitz, M. J., Gibbs, A. J., & Watson, L. (1986). The VIDE (virus identification data exchange) project: A data bank for plant viruses. Review of Plant Pathology, 65, 221–231.Google Scholar
  10. Bourke, P. M. A. (1964). Emergence of potato blight, 1843-1846. Nature, 203, 805–808.CrossRefGoogle Scholar
  11. Brim, C. A., & Stuber, C. W. (1973). Application of genetic male sterility to recurrent selection schemes in soybean. Crop Science, 13, 528–530.CrossRefGoogle Scholar
  12. Brinkerhoff, L. A. (1970). Variation in Xanthomonas malvacearum and its relation to control. Annual Review of Phytopathology, 8, 85–110.CrossRefGoogle Scholar
  13. Brown, A. H. D., Frankel, O. H., Marshall, D. R., & Williams, J. T. (1989). The use of plant genetic resources. Cambridge: Cambridge University Press.Google Scholar
  14. Burdon, J. J. (1987). Diseases and plant population biology. Cambridge: Cambridge University Press Archive, 208 pp.Google Scholar
  15. Chilosi, G., & Corazza, L. (1990). Occurrence and epidemics of yellow rust on wheat in Italy. Cereal Rusts and Powdery Mildews Bullettin, 18, 1–19.Google Scholar
  16. Clifford, B. C., & Lester, E. (1988). Control of plant diseases, costs and benefits. Oxford: Blackwell Science Publishing, 263 pp.Google Scholar
  17. Davis, M. J. (1986). Taxonomy of plant-pathogenic coryneform bacteria. Annual Review of Phytopathology, 24, 115–140.CrossRefGoogle Scholar
  18. De Boer, S., & McCann, M. (1989). Determination of population densities of Corynebacteriumsepedonicum in potato stems during the growing season. Phytopathology, 79, 946–951.CrossRefGoogle Scholar
  19. Diaz-Lago, J. E., Stuthman, D. D., & Abadie, T. E. (2002). Recurrent selection for partial resistance to crown rust in oat. Crop Science, 42, 1475–1482.CrossRefGoogle Scholar
  20. Doggett, H., & Eberhart, S. A. (1968). Recurrent selection in sorghum. Crop Science, 8, 119–121.CrossRefGoogle Scholar
  21. Douet, M. (1984). Effets structurant des consortiums maritimes sur le marche des lignes régulières: l’exemple des consortiums à participation française. Thèse de Doctorat, Université Paris 1 Panthéon-Sorbonne, 635 pp.Google Scholar
  22. Draz, I. S., Abou-Elseoud, M. S., Kamara, A. E. M., Alaa-Eldein, O. A. E., & El-Bebany, A. F. (2015). Screening of wheat genotypes for leaf rust resistance along with grain yield. Annals of Agricultural Science, 60, 29–39.CrossRefGoogle Scholar
  23. Eberhart, S. A. (1990). A comprehensive breeding system for developing improved maize hybrids. In B. Gebrekidan (Ed.), Maize improvement, production and protection in Eastern and Southern Africa. Nairobi: AMREF Printing Department.Google Scholar
  24. Ellis, M. H., Stiller, W. N., Phongkham, T., Tate, W. A., Gillespie, V. J., Gapare, W. J., et al. (2016). Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L. Euphytica, 210, 135–142.CrossRefGoogle Scholar
  25. Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen-host-environment interplay and disease emergence. Emerging Microbes & Infections, 2, e5. Scholar
  26. Fauquet, C., & Fargette, D. (1990). African cassava mosaic virus: Etiology, epidemiology and control. Plant Disease, 74, 404–411.CrossRefGoogle Scholar
  27. Fehr, W. R. (Ed.). (1987). Principles of cultivar development. New York: Macmillan.Google Scholar
  28. Garrett, K. A. (1999). Factors influencing the effects of host diversity on plant disease epidemics for wheat stripe rust and potato late blight.Google Scholar
  29. Gilmore, E. C. (1964). Suggested method of using reciprocal recurrent selection in some naturally self pollinated species. Crop Science, 4, 323–325.CrossRefGoogle Scholar
  30. Grisham, M. P. (1991). Effect of ratoon stunting disease on yield of sugarcane grown in multiple three-year plantings. Phytopathology, 81, 337–340.CrossRefGoogle Scholar
  31. Hanold, D., & Randles, J. W. (1991). Coconut cadang-cadang disease and its viroid agent. Plant Disease, 75, 330–335.CrossRefGoogle Scholar
  32. Hawkes, J. G. (1991). Genetic conservation of world crop plants. Biological Journal of the Linnean Society, 43, 1–80.CrossRefGoogle Scholar
  33. Hogenboom, N. G. (1993). Economic importance of breeding for disease resistance. In T. Jacobs & J. E. Parlevliet (Eds.), Durability of disease resistance (pp. 5–9). Dordrecht: Springer.CrossRefGoogle Scholar
  34. Hurni, S., Scheuermann, D., Krattinger, S. G., Kessel, B., Wicker, T., Herren, G., et al. (2015). The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 112, 8780–8785.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ingham, R. E., & Detling, J. K. (1990). Effects of root-feeding nematodes on aboveground net primary production in a North American grassland. Plant and Soil, 121, 279–281.CrossRefGoogle Scholar
  36. Innes, N. L. (1983). Bacterial blight of cotton. Biological Reviews, 58, 157–176.CrossRefGoogle Scholar
  37. Isaac, S. (1991). Fungal-plant interactions. Dordrecht: Springer.Google Scholar
  38. Janse, J. (1988). A Streptomyces species identified as the cause of carrot scab. Netherlands Journal of Plant Pathology, 94, 303–306.CrossRefGoogle Scholar
  39. Jenkins, G. (1984). Winter and spring wheat. Annual report of the Plant Breeding Institute, 1983, pp. 23–28.Google Scholar
  40. Jensen, N. F. (1970). A diallel selective mating system of cereal breeding. Crop Science, 10, 629–635.CrossRefGoogle Scholar
  41. Johnson, R. (1978). Practical breeding for durable resistance to rust disease in self-pollinating cereals. Euphytica, 27, 529–540.CrossRefGoogle Scholar
  42. Jonsson, B. G., Kruys, N., & Ranius, T. (2005). Ecology of species living on dead wood. Lessons for dead wood management. Silva Fennica, 39, 289–309.CrossRefGoogle Scholar
  43. Kathiria, P., Sidler, C., Woycicki, R., Yao, Y., & Kovalchuk, I. (2013). Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter. Plant Signaling Behavior, 8, e24760.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Keystone Center. (1991). Global initiative for the security and sustainable use of plant genetic resources. Keystone: Keystone International.Google Scholar
  45. Knight, R. L. (1957). Blackarm disease of cotton and its control. In Plant protection conference (Vol. 1956, pp. 53–59). London: Butterworths Scientific Publications.Google Scholar
  46. Knott, D. R., & Dvorak, J. (1976). Alien germplasm as a source of resistance to disease. Annual Review of Phytopathology, 14, 211–235.CrossRefGoogle Scholar
  47. Krattinger, S. G., Sucher, J., Selter, L. L., Chauhan, H., Zhou, B., Tang, M., et al. (2016). The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnology Journal, 14, 1261–1268.PubMedCrossRefGoogle Scholar
  48. Large, E. C. (1940). The advance of the fungi. London: Jonathan Cape.Google Scholar
  49. Lillemo, M., Joshi, A. K., Prasad, R., Chand, R., & Singh, R. P. (2013). QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theoretical and Applied Genetics, 126, 711–719.PubMedCrossRefGoogle Scholar
  50. Lucas, G. B., Lee Campbell, C., & Lucas, L. T. (1992). Causes of plant diseases. Introduction to plant diseases: Identification and management (pp. 9–14). Boston: Springer.CrossRefGoogle Scholar
  51. Lupton, F. G. H. (1983). Winter wheat. Annual report of the Plant Breeding Institute 1982, pp. 23–26.Google Scholar
  52. Marlatt, R., & Pohronezny, K. (1983). Field survey of Tahiti lime, Citrus latifolia, for algal disease, melanose, and greasy spot in southern Florida. Plant Disease, 67, 946–949.CrossRefGoogle Scholar
  53. Matzinger, D. F., & Wernsman, E. A. (1968). Four cycles of mass selection in a syntheticvariety of an autogamous species Nicotiana tabacum L. Crop Science, 8, 239–243.CrossRefGoogle Scholar
  54. McCoy, R., & Martinez-Lopez, G. (1982). Phytomonas staheli associated with coconut and oil palm diseases in Colombia. Plant Disease, 66, 675–677.CrossRefGoogle Scholar
  55. Michailides, T., & Spotts, R. (1990). Postharvest diseases of pome and stone fruits caused by Mucorpiriformis in the Pacific Northwest and California. Plant Disease, 74, 537–543.CrossRefGoogle Scholar
  56. Miedaner, T. (2016). Breeding strategies for improving plant resistance to diseases. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 561–599). Cham: Springer International Publishing.CrossRefGoogle Scholar
  57. Padmanabhan, S. Y. (1973). The great Bengal famine. Annual Review of Phytopathology, 11, 11–26.CrossRefGoogle Scholar
  58. Plank, J. V. D. (1963). Plant diseases: Epidemics and control. Plant protection conference, 1956 (p. 53). London: Butterworth.Google Scholar
  59. Polley, R. W., & Thomas, M. R. (1991). Surveys of diseases of winter wheat in England and Wales, 1976−1988. Annals of Applied Biology, 119, 1–20.CrossRefGoogle Scholar
  60. Raju, B., & Wells, J. (1986). Diseases caused by fastidious xylem-limited bacteria and strategies for management. Plant Disease, 70, 182.CrossRefGoogle Scholar
  61. Risk, J. M., Selter, L. L., Krattinger, S. G., Viccars, L. A., Richardson, T. M., Buesing, G., & Herren, G. (2012). Functional variability of the Lr34 durable resistance gene in transgenic wheat. Plant Biotechnology Journal, 10, 477–487.PubMedCrossRefGoogle Scholar
  62. Risk, J. M., Selter, L. L., Chauhan, H., Krattinger, S. G., Kumlehn, J., Hensel, G., & Viccars, L. A. (2013). The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnology Journal, 11, 847–854.PubMedCrossRefGoogle Scholar
  63. Roane, C. W. (1973). Trends in breeding for disease resistance in crops. Annual Review of Phytopathology, 11, 463–486.CrossRefGoogle Scholar
  64. Roberts, E. H. (1975). Problems of long-term storage of seed and pollen for genetic resources conservation. In O. H. Frankel & J. G. Hawkes (Eds.), Crop genetic resources for today and tomorrow (pp. 269–295). Cambridge: Cambridge University Press.Google Scholar
  65. Scott, P. R. (1981). Variation in host susceptibility. In M. J. Asher & P. J. Shipton (Eds.), Biology and control of take-all (pp. 219–236). London: Academic.Google Scholar
  66. Severns, P. M., Estep, L. K., Sackett, K. E., & Mundt, C. C. (2014). Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread. Journal of Applied Ecology, 51(6), 1622–1630.Google Scholar
  67. Sharma, H. C., Venkateswarulu, G., & Sharma, A. (2003). Environmental factors influence the expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica, 130, 365–375.CrossRefGoogle Scholar
  68. Singh, D. P. (1986). Breeding for resistance to diseases and insect pests. Berlin/New York/London: Springer.CrossRefGoogle Scholar
  69. Singh, R. P., Huerta-Espino, J., & William, H. M. (2005). Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 29, 121–127.Google Scholar
  70. Smith, D. A., & Banks, S. W. (1986). Biosynthesis, elicitation and biological activity of isoftavonoid phytoalexins. Phytochemistry, 25, 979–995.CrossRefGoogle Scholar
  71. Sreewongchai, T., Toojinda, T., Thanintorn, N., Kosawang, C., Vanavichit, A., Tharreau, D., & Sirithunya, P. (2010). Development of elite indica rice lines with wide spectrum of resistance to Thaiblast isolates by pyramiding multiple resistance QTLs. Plant Breeding, 129, 176–180.CrossRefGoogle Scholar
  72. Stoskopf, N. C., Tomes, D. T., & Christie, B. R. (1993). Plant breeding: Theory and practice. Boulder: Westview Press.Google Scholar
  73. Strange, R. N. (1993). Organisms that cause plant disease: Their detection, identification and proof of their role as pathogens. In Plant disease control (pp. 31–61). Boston: Springer.CrossRefGoogle Scholar
  74. Strange, R. N. (2006). Introduction to plant pathology. New Delhi: Wiley.Google Scholar
  75. Strange, R. N. (2013). Plant disease control: Towards environmentally acceptable methods. Boston: Springer, US, 354 pp.Google Scholar
  76. Sucher, J., Boni, R., Yang, P., Rogowsky, H., Büchner, H., Kastner, C., et al. (2017). The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnology, 15, 489–496. Scholar
  77. Thresh, J. M., & Owusu, G. K. (1986). The control of cocoa swollen shoot disease in Ghana: An evaluation of eradication procedures. Crop Protection, 5, 41–52.CrossRefGoogle Scholar
  78. Toojinda, T., Tragoonrung, S., Vanavichit, A., Siangliw, J. L., Pa-In, N., Jantaboon, J., et al. (2005). Molecular breeding for rainfed lowland rice in the Mekong region. Plant Production Science, 8, 330–333.CrossRefGoogle Scholar
  79. Ullstrup, A. J. (1972). The impacts of the southern corn leaf blight epidemics of 1970-1971. Annual Review of Phytopathology, 10, 37–50.CrossRefGoogle Scholar
  80. Van Bueren, E. L., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Messmer, M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wageningen Journal of Life Sciences, 58, 193–205.CrossRefGoogle Scholar
  81. Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.PubMedCrossRefGoogle Scholar
  82. Welz, H. G., & Geiger, H. H. (2000). Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breeding, 119, 1–4.CrossRefGoogle Scholar
  83. Withers, L. A. (1989). In vitro conservation and germplasm multiplication. In A. H. D. Brown, O. H. Frankel, D. R. Marshall, & J. T. Williams (Eds.), The use of plant genetic resources (pp. 309–334). Cambridge: Cambridge University Press.Google Scholar
  84. Wolfe, M. S., & Barrett, J. A. (1979). Disease in crops: Controlling the evolution of plant pathogens. Journal of the Royal Society of Arts, 127, 321–333.Google Scholar
  85. Wolfe, M. S., & Gessler, C. (1992). The use of resistance genes in breeding epidemiological considerations. In T. Boller & F. Meins (Eds.), Genes involved in plant defense (pp. 3–23). Wien: Springer.CrossRefGoogle Scholar
  86. Wyss, U. (1981). Ectoparasitic root nematodes: Feeding behavior and plant cell responses. In B. M. Zuckerman & R. A. Rhode (Eds.), Plant parasitic nematodes (Vol. III, pp. 325–351). New York: Academic.CrossRefGoogle Scholar
  87. Zadoks, J. C. (2001). Plant disease epidemiology in the twentieth century. A picture by means of selected controversies. Plant Disease, 85, 808–816.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ali Hassan Khan
    • 1
  • Mariam Hassan
    • 1
  • Muhammad Naeem Khan
    • 1
  1. 1.Ayub Agriculture Research Institute (AARI)FaisalabadPakistan

Personalised recommendations