Exploiting RNA Interference Mechanism in Plants for Disease Resistance

  • Anita Puyam
  • Kiranjot Kaur
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)


RNA interference (RNAi) is a novel technique in the field of functional genomics. It has an immense potential for managing plant diseases by down regulating expression of phytopathogens’ genes (invader’s gene) and other negative regulators of resistance pathways. This technique has become a breakthrough in the field of managing plant diseases rather than implementing biological and chemical control measures. RNAi mechanism involves the silencing of specific genes responsible for infection in the host plant, in a homology-dependent manner, before their translation. Incorporation of RNAi over the time has become one of the most promising technology, which reduces the risks incurred in the production of transgenic plants. The idea of gene silencing has been successful under laboratory conditions, and it is now gaining importance for field applications as well. However, problem presently to solve include delivering RNAi gene silencing in the field, in a convenient way for managing fungal, bacterial and viral plant diseases, on host-pathogen related targeted sites. This chapter will give an insight on the strategies of delivering RNAi mediated gene silencing and managing plant diseases in a most practical way for the farmers.


RNA interference Dicer Functional genomics Gene silencing Gene knock down 


  1. Albright, V. C., Wong, C. R., Hellmich, R. L., & Coats, J. R. (2017). Dissipation of double-stranded RNA in aquatic microcosms. Environmental Toxicology and Chemistry, 36, 1249–1253.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andrade, C. E., & Hunter, W. B. (2016). In I. Y. Abdurakhmonov (Ed.), RNA interference – Natural gene-based technology for highly specific pest control (HiSPeC) in RNA interference (pp. 391–409). Croatia: InTech.Google Scholar
  3. Andradeab, C. M., Tinocoa, M. L. P., Rietha, A. F., Maiaa, F. C. O., & Aragao, F. J. L. (2015). Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology, 65, 626–632.CrossRefGoogle Scholar
  4. Aragao, F. J., & Faria, J. C. (2009). First transgenic gemini-virus-resistant plant in the field. Nature Biotechnology, 27, 1086–1088.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Armas-Tizapantz, A., & Mozntiel-Gonzalez, A. M. (2016). RNAi silencing: A tool for functional genomics research on fungi. Fungal Biology Reviews, 30, 91–100.CrossRefGoogle Scholar
  6. Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bertazzon, N., Raiola, A., Castiglioni, C., Gardiman, M., Angelini, E., Borgo, M., & Ferrari, S. (2012). Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interfer-ence. Plant Cell Reports, 31, 133–143.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 8, e56329.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, E. A., & Aragao, F. J. (2007). RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant-Microbe Interactions, 20, 717–726.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brodersen, P., & Voinnet, O. (2006). The diversity of RNA silencing pathways in plants. Trends in Genetics, 22, 268–280.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Broglie, K. I., Chet, M., & Holliday, M. N. (1991). Transgenic plants with enhanced resistance to fungal pathogen Rhizoctonia solani. Science, 254, 1194–1197.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., & Zurcher, E. J. E. (1996). Plant viruses online: Descriptions and lists from the VIDE database (Version: 20th August 1996).Google Scholar
  13. Cai, Q., He, B., Kogel, K. H., & Jin, H. (2018). Cross-kingdom RNA trafficking and environmental RNAi — nature’s blueprint for modern crop protection strategies. Current Opinion in Microbiology, 46, 58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carbonell, A., Martinez de Alba, A. E., Flores, R., & Gago, S. (2008). Double stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371, 44–53.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cerutti, H., & Ibrahim, F. (2010). Turnover of mature miRNAs and siRNAs in plants and algae. Advances in Experimental Medicine and Biology, 700, 124–139.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., & Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the micro-RNA pathway at an interphase step. Genes and Development, 18, 1179–1186.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen, Y., Gao, Q. X., Haung, M. M., Liu, Y., Liu, Z. Y., & Liu, X. (2015). Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Science Reports-UK, 5, 12500.CrossRefGoogle Scholar
  18. Cheng, W., Song, X. S., Li, H. P., Cao, L. H., Sun, K., & Qiu. (2015). Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnology Journal, 13, 1335–1345.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cho, K. H. (2017). The structure and function of the gram-positive bacterial RNA degradosome. Frontiers in Microbiology, 8, 1–10.Google Scholar
  20. Chuang, C. F., & Meyerowtiz, E. M. (2000). Specific and heritable genetic interference by double–stranded RNA in Arabidopsis thaliana. PNAS, 97, 4985–4990.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dolgov, S., Mikhaylov, R., Serova, T., Shulga, O., & Firsov, A. (2010). Pathogen–derived methods for improving resistance of transgenic plums (Prunus domestica L.) for plum pox virus infection. Julius–Kuhn–Arch, 427, 133–140.Google Scholar
  22. Duan, C. G., Wang, C. H., & Guo, H. S. (2012). Application of RNA silencing to plant disease resistance. Silence, 3, 1–8.CrossRefGoogle Scholar
  23. Dubelman, S., Fischer, J., Zapata, F., Huizinga, K., Jiang, C., Uffman, J., & Levine, S. (2014). Environmental fate of double–stranded RNA in agricultural soils. PLoS One, 9, e93155.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A., & Voinnet, O. (2007). Intra– and Intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing path–ways. Nature Genetics, 39, 848–856.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Escobar, M. A., Civerolo, E. L., Summerfelt, K. R., & Dandekar, A. M. (2001). RNAi–mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 13437–13442.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Escobar, M. A., Leslie, C. A., Mcgranahan, G. H., & Dandekar, A. M. (2002). Silencing crown gall disease in walnut (Julgans regia L.). Plant Science, 163, 591–597.CrossRefGoogle Scholar
  27. Fagwalawd, I. D., Kutama, A. S., & Yakasai, M. T. (2013). Current issues in plant disease control: Biotechnology and plant disease. Bayero Journal of Pure and Applied Sciences (BAJOPAS), 6, 121–126.CrossRefGoogle Scholar
  28. Fitzgerald, A., Van, K. J. A., & Plummer, K. M. (2004). Simultaneous silencing of multiple genes in the apple scab fungus Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genetics and Biology, 41, 963–971.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fletcher, J., Bender, C., Budowle, B., Cobb, W. T., Gold, S. E., Ishimaru, C. A., & Luster, D. (2006). Plant pathogen forensics: Capabilities, needs, and recommendations. Microbiology and Molecular Biology Reviews, 70, 450–471.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gan, D., Zhang, J., Jiang, H., Jiang, T., Zhu, S., & Cheng, B. (2010). Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Reports, 29, 1261–1268.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., & Brempelis, K. J. (2010). Arabidopsis RNA–dependent RNA polymerases and dicer–like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. The Plant Cell, 22, 481–496.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Govindarajulu, M., Epstein, L., Wroblewski, T., & Michelmore, R. W. (2015). Host–induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnology Journal, 13, 875–883.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hily, J. M., & Liu, Z. (2007). An overview of small RNAs. In C. L. Bassett (Ed.), Regulation of gene expression in plants (pp. 123–147). Berlin: Springer–Verlag.CrossRefGoogle Scholar
  34. International service for acquisition of agri–biotech applications. (2012). Pocket K No. 34: RNAi for crop improvement. Available Source:
  35. Jahan, S. N., Asman, A. K. M., Corcoran, P., Fogelqvist, J., Vetukuri, R. R., & Dixelius, C. (2015). Plant mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. Journal of Experimental Botany, 66, 2785–2794.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jiang, C. J., Shimono, M., Maeda, S., Inoue, H., Mori, M., Hasegawa, M., et al. (2009). Suppression of the rice fatty–acid desaturase gene Os- SSI2 enhances resistance to blast and leaf blight diseases in rice. Molecular Plant-Microbe Interactions, 22, 820–829.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kadotani, N., Nakayashiki, H., Tosa, Y., & Mayama, S. (2003). RNA silencing in the pathogenic fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 16, 769–776.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Katiyar-Aggarwal, S., & Jin, H. (2007). Discovery of pathogen–regulated small RNAs in plants. Methods in Enzymology, 427, 215–227.CrossRefGoogle Scholar
  39. Katiyar-Aggarwal, S., Rebekah, M., Douglas, D., Omar, B., Andy Villegas, J., Jian-Kang, Z., et al. (2006). Pathogen–inducible endogenous siRNA in plant immunity. Pest Management Science, 74, 790–799.Google Scholar
  40. Kew Royal Botanical Gardens. (2017). State of the world’s plants (pp. 66–71). Kew: Royal Botanic Gardens.Google Scholar
  41. Khan, A. M., Ashfaq, M., Kiss, Z., Khan, A. A., Mansoor, S., & Falk, B. W. (2013). Use of recombinant tobacco mosaic virus to achieve RNAinterference in plants against the Citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS ONE, 8, e73657.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 1819, 137–148.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kjemtrup, S., Sampson, K. S., Peele, C. G., Nguyen, L. V., & Conkling, M. A. (1998). Gene silencing from plant DNA carried by a geminivirus. The Plant Journal, 14, 91–100.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Koch, A., & Kogel, K. H. (2014). New wind in the sails: Improving the agronomic value of crop plants through RNAi–mediated gene silencing. Plant Biotechnology Journal, 12, 821–831.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. (2013). Host–induced gene silencing of cytochrome P450 lanosterol C14α–demethylase–encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America, 110, 19324–19329.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., & Linicus, L. (2016). An RNAi–based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathogens, 12, e1005901.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Konakalla, N. C., Kaldis, A., Berbati, M., Masarapu, H., & Voloudakis, A. E. (2016). Exogenous application of double–stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta, 244, 961–969.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kumagai, M. H., Donson, J., della–Cioppa, G., Harvey, D., Hanley, K., & Grill, L. K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with virus–derived RNA. Proceedings of the National Academy of Sciences of the USA, 92, 1679–1683.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ladewig, K., Xu, Z. P., & Lu, G. Q. (2009). Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 6, 907–922.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Laurila, M. R., Makeyev, E. V., & Bamford, D. H. (2002). Bacteriophage phi6 RNA–dependent RNA polymerase: Molecular details of initiating nucleic acid synthesis without primer. The Journal of Biological Chemistry, 277, 17117–17124.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Li, L. D., Chang, S. S., & Liu, Y. (2010). RNA interference pathways in filamentous fungi. Cellular and Molecular Life Sciences, 67, 3849–3863.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Liu, Y. L., Schiff, M., & Dinesh Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31, 777–786.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Makeyev, E. V., & Bamford, D. H. (2000). Replicase activity of purified recombinant protein P2 of double–stranded RNA bacteriophage phi6. The EMBO Journal, 19, 124–133.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., & Fletcher, S. J. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3, 1620.CrossRefGoogle Scholar
  55. Mohanpuria, P., Rana, N., & Yadav, S. (2008). Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos. Biologia Plantarum, 52, 381–384.CrossRefGoogle Scholar
  56. Moritoh, S., Miki, D., Akiyama, M., Kawahara, M., Izawa, T., Maki, H., & Shimamoto, K. (2005). RNAi–mediated silencing of OsGEN–L (OsGEN–like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant & Cell Physiology, 46, 699–715.CrossRefGoogle Scholar
  57. Nandety, R. S., Kuoy, Y. W., Nouriy, S., & Falk, B. W. (2015). Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered, 6, 8–19.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Niblett, C. L., & Bailey, A. M. (2012). Potential applications of gene silencing or RNA interference (RNAi) to control disease and insect pests of date palm. Emirates Journal of Food and Agriculture, 24, 462–469.Google Scholar
  59. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Niehl, A., Marjukka, S., Poranen, M. M., & Manfred, H. (2018). Synthetic biology approach for plant protection using dsRNA. Plant Biotechnology Journal, 16, 1679–1687.PubMedCentralCrossRefGoogle Scholar
  61. Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J., & Schweizer, P. (2010). HIGS: Host induced gene silencing in the obli–gate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 22, 3130–3141.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Oerke, E. C. (2005). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  63. Ozden, S., & Nuh, B. (2017). New approach in management against plant fungal disease: Host induced gene silencing. International Journal of Molecular Science, 1(1), 20–29.Google Scholar
  64. Palmer, K. E. & Rybicki, E. (2001). Investigation of the potential of maize streak virus to act as an infectious gene vector in maize plants. Archives of Virology, 146(6), 1089–1104.Google Scholar
  65. Pandolfini, T., Molesini, B., Avesani, L., Spena, A., & Polverari, A. (2003). Expression of self–complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnology, 3, 7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Papolu, P. K., Gantasala, N. P., Kamaraju, D., Banakar, P., Sreevathsa, R., & Rao, U. (2013). Utility of host delivered RNAi of two FMRF amide like peptides, flp–14 and flp–18, for the management of root knot nematode, Meloidogyne incognita. PLoS One., 6;8(11), e80603.CrossRefGoogle Scholar
  67. Persengiev, S. P., Zhu, X., & Green, M. R. (2004). Non–specific, concentration–dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA, 10, 12–18.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pooggin, M., Shivaprasad, P. V., Veluthambi, K., & Hohn, T. (2003). RNAi targeting of DNA virus in plants. Nature Biotechnology, 21, 131–132.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Reddy, M. K. R., Xu, Z. P., Lu, G., & da Costa, J. C. D. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45, 7504–7509.CrossRefGoogle Scholar
  70. Romano, N., & Macino, G. (1992). Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6, 3343–3353.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sanghera, G. S., Kashyap, P. L., Singh, G., & Teixeira da Silva, J. A. (2011). Transgenics: Fast track to plant stress amelioration. Transgenic Plant Journal, 5, 1–26.Google Scholar
  72. Sanju, S., Siddappa, S., Thakur, A., Shukla, P. K., Srivastava, N., Pattanayak, D., et al. (2015). Host mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Functional & Integrative Genomics, 15, 697–706.CrossRefGoogle Scholar
  73. Schweizer, P., Pokorny, P., Schulze-Lefert, P., & Dudler, R. (2000). Double stranded RNA interference with gene functions at the single cell in cereals. The Plant Journal, 24, 895–903.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Scofield, S. R., Huang, L., Brandt, A. S., & Gill, B. S. (2005). Development of a virus–induced gene–silencing system for hexaploid wheat and its use in functional analysis of the Lr21–mediated leaf rust resistance pathway. Plant Physiology, 138, 2165–2173.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Scorza, R., Callahan, A., Dardick, C., Ravelonandro, M., Polak, J., Malinowski, T., Zagrai, I., & Cambra, M. (2013). Genetic engineering of plum pox virus resistance: ‘HoneySweet’ plum—From concept to product. Plant Cell, Tissue and Organ Culture, 115, 1–12.CrossRefGoogle Scholar
  76. Seemanpillai, M., Dry, I., Randles, J., & Rezaian, A. (2003). Transcriptional silencing of geminiviral promoter–driven transgenes following homologous virus infection. Molecular Plant-Microbe Interactions, 16, 429–438.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Segers, G. C., Hamada, W., Oliver, R. P., & Pspanu, P. D. (1999). Isolation and characteristaion of five different hydrophobin–encoding cdna from the fungal tomato pathogen Cladosporium fulvum. Molecular & General Genetics, 261, 644–652.CrossRefGoogle Scholar
  78. Senthil-Kumar, M., & Mysore, K. S. (2010). RNAi in plants: Recent developments and applications in agriculture. In Gene silencing: Theory, techniques and applications (pp. 83–199). New York: NOVA Science Publishers, Inc.Google Scholar
  79. Shimizu, T., Yoshii, M., Wei, T., Hirochika, H., & Omura, T. (2009). Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnology Journal, 7, 24–32.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Singh, R. S. (2005). Introduction to principles of plant pathology (pp. 178–189). New Delhi: Oxford and IBH Publishing PVT. LTD.Google Scholar
  81. Son, H., Park, A. R., Lim, J. Y., Shin, C., & Lee, Y. W. (2017). Genome–wide exonic small interference RNA–mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum. PLoS Genetics, 13, e1006595.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Song, Y., & Thomma, B. P. (2016). Host–induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Molecular Plant Pathology, 19, 77–89. Scholar
  83. Starkel, C. (2011). Host induced gene silencing – Strategies for the improvement of resistance against Cercospora beticola in sugar beet (B. vulgaris L.) and against Fusarium graminearum in wheat (T. aestivum L.) and maize (Z. mays L.) (Phd. Thesis, Berlin, Germany).Google Scholar
  84. Tenllado, F., & Diaz–Ruiz, J. R. (2001). Double–stranded RNA–mediated interference with plant virus infection. Journal of Virology, 75, 12288–12297.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tenllado, F., Barajas, D., Vargas, M., Atencio, F. A., Gonzalez–Jara, P., & Diaz–Ruiz, J. R. (2003). Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. Molecular Plant-Microbe Interactions, 16, 149–158.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Tinoco, M. L., Dias, B. B., Dall’Astta, R. C., Pamphile, J. A., & Aragao, F. J. (2010). In vivo trans– Specific gene silencing in fungal cells by in planta expression of a double–stranded RNA. BMC Biology, 31, 27.CrossRefGoogle Scholar
  87. Trieu, T. A., Calo, S., Nicolas, F. E., Vila, A., Moxon, S., & Dalmay, T. (2015). A non–canonical RNA silencing pathway promotes mRNA degradation in basal fungi. PLoS Genetics, 11, e1005168.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Turnage, M. A., Muangsan, N., Peele, C. G., & Robertson, D. (2002). Geminivirus–based vectors for gene silencing in arabidopsis. The Plant Journal, 30, 107–117.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Urich, T., Lanzén, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta–transcriptome. PLoS One, 3, e2527.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Walawage, S. L., Britton, M. T., Leslie, C. A., Uratsu, S. L., Li, Y., & Dandekar, A. M. (2013). Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics, 14, 668.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wang, M., Weiberg, A., Lin, F. M., Thomma, B. P. H. J., Huang, H. D., & Jin, H. (2016). Bidirectional cross–kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants, 2, 16151.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133–141.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wang, M., Weiberg, A., Dellota, E., Jr., Yamane, D., & Jin, H. (2017a). Botrytis small RNA Bc–siR37 suppresses plant defense genes by cross–kingdom RNAi. RNA Biology, 14, 421–428.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang, B., Sun, Y. F., Song, N., Zhao, M. X., Liu, R., & Feng, H. (2017b). Puccinia striiformis f. sp tritici microRNA–like RNA 1 (Pst–milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis–related 2 gene. The New Phytologist, 215, 338–350.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wani, S. H., Sanghera, G. S., & Singh, N. B. (2010). Bio–technology and plant disease control–role of RNA interference. American Journal of Plant Sciences, 1, 55–68.CrossRefGoogle Scholar
  96. Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and an–tisense RNA. Proceedings of the National Academy of Sciences, 95, 13959–13964.CrossRefGoogle Scholar
  97. Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., et al. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342, 118–123.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Witwer, K. W., & Hirschi, K. D. (2014). Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration: Negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebraytes, but important questions persist. Bioessays, 36, 394–406.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Witwer, K. W., McAlexander, M. A., Queen, S. E., & Adams, R. J. (2013). Real–time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: Limited evidence for general uptake of dietary plant xenomiRs. RNA Biology, 10, 1080–1086.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wroblewski, T., Piskurewicz, U., Tomczak, A., & Ochoa Michelmore, R. W. (2007). Silencing of the major family of NBS–LRR–encoding genes in lettuce results in the loss of multiple resistance specificities. The Plant Journal, 51(5), 803–818.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wuriyanghan, H., & Falk, B. W. (2013). RNAinterference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant tobacco mosaic virus (TMV). PLoS ONE, 8, e66050.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yin, C., & Hulbert, S. (2015). Host induced gene silencing (HIGS), a promising strategy for developing disease resistant crops. Gene Technology, 4, 130.CrossRefGoogle Scholar
  103. Yin, G., Sun, Z., Liu, N., Zhang, L., Song, Y., Zhu, C., & Wen, F. (2009). Production of double–stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Applied Microbiology and Biotechnology, 84, 323–333.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yin, C., Jurgenson, J. E., & Hulbert, S. H. (2011). Development of a host–induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f.sp.tritici. Molecular Plant-Microbe Interactions, 24, 554–561.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Yin, C., Downey, S. I., Klages Mundt, N. L., Ramachandran, S., & Chen, X. (2015). Identification of promising host–induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genomics, 16, 579.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yuan, B., Latek, R., Hossbach, M., Tuschl, T., & Lewitter, F. (2004). siRNA selection server: An automated siR–NA oligonucleotide prediction server. Nucleic Acids Research, 32, 130–134.CrossRefGoogle Scholar
  107. Zhang, H., Guo, J., Voegele, R. T., Zhang, J., Duan, Y., Luo, H., & Kang, Z. (2012a). Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host–induced RNAi system. PLoS One, 7, e49262.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhang, L., Hou, D. X., Chen, X., Li, D. H., Zhu, L. Y., & Zhang, Y. J. (2012b). Exogenous plant MIRI68a specifically targets mammalian LDLRAP1: Evidence of cross–kingdom regulation by microRNA. Cell Research, 22, 107–126.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zongli, H., Urvi, P., Natsumi, M., Yuri, T., & Jose, R. B. (2015). Down regulation of Fusarium oxysporum endogenous genes by host–delivered RNA interference enhances disease resistance. Frontiers in Chemistry, 3, 1–10.Google Scholar
  110. Zrachya, A., Kumar, P. P., Ramakrishan, U., Levy, Y., Loyter, A., Arazi, T., et al. (2007). Production of siRNA targettance to the virus against TYlC coat protein transcripts lead to silencing expression and resistance in virus. Transgenic Research, 16, 385–398.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anita Puyam
    • 1
  • Kiranjot Kaur
    • 2
  1. 1.Rani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Khalsa CollegeAmritsarIndia

Personalised recommendations