Advertisement

Iterative Construction of Complete Lyapunov Functions: Analysis of Algorithm Efficiency

  • Carlos ArgáezEmail author
  • Peter Giesl
  • Sigurdur Hafstein
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 947)

Abstract

Differential equations describe many interesting phenomena arising from various disciplines. This includes many important models, e.g. predator-prey in population biology or the Van der Pol oscillator in electrical engineering. Complete Lyapunov functions allow for the systematic study of the qualitative behaviour of complicated systems. In this paper, we extend the analysis of the algorithm presented in [1]. We study the efficiency of our algorithm and discuss important sections of the code.

Keywords

Dynamical system Complete Lyapunov function Orbital derivative Meshless collocation Radial Basis Functions Algorithms Scalability 

Notes

Acknowledgement

First author wants to thank Dr. A. Argáez for nice discussions on normed spaces as well as the Icelandic Research Fund (Rannís) for funding this work under the grant: number 163074-052, Complete Lyapunov functions: Efficient numerical computation.

References

  1. 1.
    Argáez, C., Giesl, P., Hafstein, S.: Iterative construction of complete Lyapunov functions. In: Proceedings of 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018), pp. 211–222 (2018).  https://doi.org/10.5220/0006835402110222, ISBN 978-989-758-323-0
  2. 2.
    Argáez, C., Giesl, P., Hafstein, S.: Analysing dynamical systems towards computing complete Lyapunov functions. In: Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2017, Madrid, Spain (2017)Google Scholar
  3. 3.
    Argáez, C., Giesl, P., Hafstein, S.: Computational approach for complete Lyapunov functions. Accepted in Springer Proceedings in Mathematics and Statistics (2018)Google Scholar
  4. 4.
    Argáez, C., Hafstein, S., Giesl, P.: Wendland functions a C++ code to compute them. In: Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2017, Madrid, Spain, pp. 323–330 (2017)Google Scholar
  5. 5.
    Argáez, C., Giesl, P., Hafstein, S.: Computation of complete Lyapunov functions for three-dimensional systems (2018, submitted)Google Scholar
  6. 6.
    Argáez, C., Giesl, P., Hafstein, S.: Computation of complete Lyapunov functions for three-dimensional systems. In: 57th IEEE Conference on Decision and Control (CDC) (2018, to be published)Google Scholar
  7. 7.
    Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series, vol. 38. American Mathematical Society (1978)Google Scholar
  8. 8.
    Conley, C.: The gradient structure of a flow I. Ergodic Theory Dyn. Syst. 8, 11–26 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dellnitz, M., Junge, O.: Set oriented numerical methods for dynamical systems. In: Handbook of Dynamical Systems, vol. 2, pp. 221–264. North-Holland, Amsterdam (2002)zbMATHGoogle Scholar
  10. 10.
    Giesl, P.: Construction of Global Lyapunov Functions Using Radial Basis Functions. Lecture Notes in Mathematics, vol. 1904. Springer, Berlin (2007)CrossRefGoogle Scholar
  11. 11.
    Giesl, P., Hafstein, S.: Review of computational methods for Lyapunov functions. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2291–2331 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to Dynamical Systems. SIAM J. Numer. Anal. 45(4), 1723–1741 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hsu, C.S.: Cell-to-Cell Mapping. Applied Mathematical Sciences, vol. 64. Springer, New York (1987)CrossRefGoogle Scholar
  14. 14.
    Hurley, M.: Chain recurrence, semiflows, and gradients. J. Dyn. Diff. Equ. 7(3), 437–456 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hurley, M.: Lyapunov functions and attractors in arbitrary metric spaces. Proc. Am. Math. Soc. 126, 245–256 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Iske, A.: Perfect centre placement for radial basis function methods. Technical report TUM-M9809, TU Munich, Germany (1998)Google Scholar
  17. 17.
    Krauskopf, B., Osinga, H., Doedel, E.J., Henderson, M., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int. J. Bifur. Chaos Appl. Sci. Eng. 15(3), 763–791 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 521–790 (1992). Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian originalMathSciNetCrossRefGoogle Scholar
  19. 19.
    Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wendland, H.: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 258–272 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Science InstituteUniversity of IcelandReykjavíkIceland
  2. 2.Department of MathematicsUniversity of SussexBrightonUK

Personalised recommendations