Nanoparticle Vaccines for Immunotherapy: From Design to Clinical Trials

  • Achraf Noureddine
  • Jonas G. Croissant
  • Harrison O. Davis
  • Lorenza I. Friedrich
  • Rita E. SerdaEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 41)


Nanoparticles have the capacity to activate the immune system, based on both intrinsic particle characteristics and through the delivery of immune activating cargo. Co-delivery of antigens with adjuvants, such as cytokines, cytotoxic agents or pathogen-associated molecular patterns, presents opportunities for stimulating antigen-specific immune responses. This chapter highlights the immunogenic benefits of select chemotherapeutics and the use of nanoparticles to deliver immunogenic molecules and antigens. The influence of intrinsic nanoparticle properties and biological barriers on immune responses to nanoparticles is also discussed. In closing, a summary of nanoparticles approved for clinical use in the United States and examples of those approved in other countries are presented to highlight successes in nano-immunotherapy.


Immunotherapy Nanoparticle vaccine Delivery Cancer Adjuvant Nanomedicine 


  1. 1.
    Strassburg MA. The global eradication of smallpox. Am J Infect Control. 1982;10(2):53–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    World Health Organization. Global vaccine action plan: monitoring eaaarGW.Google Scholar
  3. 3.
    Hinman A. Eradication of vaccine-preventable diseases. Annu Rev Public Health. 1999;20:211–29.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Serda RE. Particle platforms for cancer immunotherapy. Int J Nanomedicine. 2013;8:1683–96.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clinical and experimental vaccine research. 2015;4(1):23–45.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    De Gregorio E, Rappuoli R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol. 2014;14(7):505–14.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel). 2015;3(2):320–43.CrossRefGoogle Scholar
  10. 10.
    Naud PS, Roteli-Martins CM, De Carvalho NS, et al. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum Vaccin Immunother. 2014;10(8):2147–62.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fuenmayor J, Godia F, Cervera L. Production of virus-like particles for vaccines. New Biotechnol. 2017;39(Pt B):174–80.CrossRefGoogle Scholar
  12. 12.
    Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31(10):2563–82.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Meraz IM, Savage DJ, Segura-Ibarra V, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11(10):3484–91.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.CrossRefGoogle Scholar
  15. 15.
    Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release. 2012;161(1):25–37.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science. 2007;316(5824):612–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature. 2003;425(6956):397–402.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Houde M, Bertholet S, Gagnon E, et al. Phagosomes are competent organelles for antigen cross-presentation. Nature. 2003;425(6956):402–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Basha G, Lizee G, Reinicke AT, Seipp RP, Omilusik KD, Jefferies WA. MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLoS One. 2008;3(9):e3247.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Croissant JG, Fatieiev Y, Omar H, et al. Periodic mesoporous organosilica nanoparticles with controlled morphologies and high drug/dye loadings for multicargo delivery in cancer cells. Chemistry. 2016;22(28):9607–15.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Noureddine A, Brinker CJ. Pendant/bridged/mesoporous silsesquioxane nanoparticles: versatile and biocompatible platforms for smart delivery of therapeutics. Chem Eng J. 2018;340:125–47.CrossRefGoogle Scholar
  22. 22.
    Park J, Wrzesinski SH, Stern E, et al. Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fan Y, Kuai R, Xu Y, Ochyl LJ, Irvine DJ, Moon JJ. Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 2017;17(12):7387–93.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dane EL, Irvine DJ. Big thinking for adjuvants. Nat Biotechnol. 2015;33(11):1146–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Meraz IM, Hearnden CH, Liu X, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS One. 2014;9(4):e94703.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Horisawa E, Kubota K, Tuboi I, et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm Res. 2002;19(2):132–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev. 2001;50(1–2):143–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small. 2013;9(18):3138–46.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Borges O, Cordeiro-da-Silva A, Romeijn SG, et al. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J Control Release. 2006;114(3):348–58.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–46.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small. 2011;7(14):1919–31.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine. 2002;21(1–2):67–77.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci. 1998;6(2):153–63.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Simecka JW. Mucosal immunity of the gastrointestinal tract and oral tolerance. Adv Drug Deliv Rev. 1998;34(2–3):235–59.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jiang PL, Lin HJ, Wang HW, et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 2015;11:356–67.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stano A, Nembrini C, Swartz MA, Hubbell JA, Simeoni E. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine. 2012;30(52):7541–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159–64.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sloat BR, Sandoval MA, Hau AM, He Y, Cui Z. Strong antibody responses induced by protein antigens conjugated onto the surface of lecithin-based nanoparticles. J Control Release. 2010;141(1):93–100.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li X, Sloat BR, Yanasarn N, Cui Z. Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur J Pharm Biopharm. 2011;78(1):107–16.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220(Pt A):141–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang C, Ge Q, Ting D, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater. 2004;3(3):190–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mueller SN, Tian S, DeSimone JM. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm. 2015;12(5):1356–65.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–54.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev. 2001;47(1):55–64.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mottram PL, Leong D, Crimeen-Irwin B, et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm. 2007;4(1):73–84.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm. 2005;301(1–2):149–60.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jain AK, Goyal AK, Gupta PN, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release. 2009;136(2):161–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thomas C, Gupta V, Ahsan F. Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. Int J Pharm. 2009;379(1):41–50.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010;27(5):905–19.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Meraz IM, Melendez B, Gu J, et al. Activation of the Inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm. 2012;9:2049–62.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Roux X, Dubuquoy C, Durand G, et al. Sub-nucleocapsid nanoparticles: a nasal vaccine against respiratory syncytial virus. PLoS One. 2008;3(3):e1766.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yu JR, Kim S, Lee JB, Chang J. Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J Virol. 2008;82(5):2350–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rodrigues TC, Oliveira MLS, Soares-Schanoski A, et al. Mucosal immunization with PspA (pneumococcal surface protein a)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One. 2018;13(1):e0191692.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kunda NK, Alfagih IM, Miyaji EN, et al. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm. 2015;495(2):903–12.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dhakal S, Renu S, Ghimire S, et al. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front Immunol. 2018;9:934.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stylianou E, Diogo GR, Pepponi I, et al. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur J Immunol. 2014;44(2):440–9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Baleeiro RB, Schweinlin M, Rietscher R, et al. Nanoparticle-based mucosal vaccines targeting tumor-associated antigens to human dendritic cells. J Biomed Nanotechnol. 2016;12(7):1527–43.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang D, Molavi O, Lutsiak ME, Elamanchili P, Kwon GS, Samuel J. Poly(D,L-lactic-co-glycolic acid) microsphere delivery of adenovirus for vaccination. J Pharm Pharm Sci. 2007;10(2):217–30.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Maldonado-Contreras AL, McCormick BA. Intestinal epithelial cells and their role in innate mucosal immunity. Cell Tissue Res. 2011;343(1):5–12.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Moss DM, Curley P, Kinvig H, Hoskins C, Owen A. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol. 2018;12(3):223–36.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31(1):51–72.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2006;13:54–54.Google Scholar
  68. 68.
    Panaretakis T, Kepp O, Brockmeier U, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28(5):578–90.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Martins I, Kepp O, Galluzzi L, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Annals of the New York Academy of Sciences. 2010;1209(1):77–82.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Birge RB, Boeltz S, Kumar S, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. 2016;23(6):962–78.Google Scholar
  71. 71.
    Wong DY, Ong WW, Ang WH. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angewandte Chemie (International ed. in English). 2015;54(22):6483–7.CrossRefGoogle Scholar
  72. 72.
    Zhao X, Yang K, Zhao R, et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 2016;102:187–97.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lu J, Liu X, Liao YP, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8(1):1811.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zheng DW, Chen JL, Zhu JY, et al. Highly integrated Nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 2016;16(7):4341–7.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Noureddine A, Lichon L, Maynadier M, et al. Controlled multiple functionalization of mesoporous silica nanoparticles: homogeneous implementation of pairs of functionalities communicating through energy or proton transfers. Nanoscale. 2015;7(26):11444–52.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res. 2011;44(10):903–13.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Noureddine A, Gary-Bobo M, Lichon L, et al. Bis-clickable mesoporous silica nanoparticles: straightforward preparation of light-actuated Nanomachines for controlled drug delivery with active targeting. Chemistry. 2016;22(28):9624–30.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Croissant J, Zink JI. Nanovalve-controlled cargo release activated by plasmonic heating. J Am Chem Soc. 2012;134(18):7628–31.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Saint-Cricq P, Deshayes S, Zink JI, Kasko AM. Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core-shell mesoporous silica nanoparticles. Nanoscale. 2015;7(31):13168–72.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Roy A, Singh MS, Upadhyay P, Bhaskar S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: a nanoparticle based approach. Mol Pharm. 2010;7(5):1778–88.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Roy A, Chandra S, Mamilapally S, Upadhyay P, Bhaskar S. Anticancer and immunostimulatory activity by conjugate of paclitaxel and non-toxic derivative of LPS for combined chemo-immunotherapy. Pharm Res. 2012;29(8):2294–309.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Seth A, Heo MB, Lim YT. Poly (gamma-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials. 2014;35(27):7992–8001.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol. 2008;380(1):252–63.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tumban E, Peabody J, Peabody DS, Chackerian B. A universal virus-like particle-based vaccine for human papillomavirus: longevity of protection and role of endogenous and exogenous adjuvants. Vaccine. 2013;31(41):4647–54.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Tyler M, Tumban E, Peabody DS, Chackerian B. The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine. Biotechnol Bioeng. 2014;111(12):2398–406.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Saboo S, Tumban E, Peabody J, et al. Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol Pharm. 2016;13(5):1646–55.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    HAHN TJ, WEBB B, KUTNEY J, et al. Rapid manufacture and release of a GMP batch of Zaire ebolavirus glycoprotein vaccine made using recombinant Baculovirus-Sf9 insect cell culture technology. Bioprocess J. 2015;14(1):6–14.CrossRefGoogle Scholar
  88. 88.
    Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioengineering & translational medicine. 2016;1(1):10–29.CrossRefGoogle Scholar
  89. 89.
    Fries L, Shinde V, Stoddard JJ, et al. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults. Immun Ageing. 2017;14(1):8.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Colosia AD, Yang J, Hillson E, et al. The epidemiology of medically attended respiratory syncytial virus in older adults in the United States: a systematic review. PLoS One. 2017;12(8):e0182321.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    August A, Glenn GM, Kpamegan E, et al. A phase 2 randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus F particle vaccine formulations in healthy women of childbearing age. Vaccine. 2017;35(30):3749–59.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Glenn GM, Fries LF, Smith G, et al. Modeling maternal fetal RSV F vaccine induced antibody transfer in Guinea pigs. Vaccine. 2015;33(47):6488–92.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Smith G, Liu Y, Flyer D, et al. Novel hemagglutinin nanoparticle influenza vaccine with matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted a (H3N2) subtypes. Vaccine. 2017;35(40):5366–72.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Liu YV, Massare MJ, Pearce MB, et al. Recombinant virus-like particles elicit protective immunity against avian influenza a (H7N9) virus infection in ferrets. Vaccine. 2015;33(18):2152–8.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Fries LF, Smith GE, Glenn GM. A recombinant viruslike particle influenza A (H7N9) vaccine. N Engl J Med. 2013;369(26):2564–6.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    TJ HAHN, COURBRON D, HAMER M, MASOUD M, WONG J, TAYLOR K. Rapid manufacture and release of a GMP batch of avian influenza a (H7N9) virus-like particle vaccine made using recombinant baculovirus-Sf9 insect cell culture technology. BioProcessing. 2013;12(2):1538–8786.Google Scholar
  97. 97.
    Smith GE, Flyer DC, Raghunandan R, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous a/Anhui/1/2013 (H7N9) protection and heterologous a/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine. 2013;31(40):4305–13.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Shinde V, Fries L, Wu Y, et al. Improved titers against influenza drift variants with a nanoparticle vaccine. N Engl J Med. 2018;378:2346–8.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bengtsson KL, Song H, Stertman L, et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine. 2016;34(16):1927–35.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Raghunandan R, Lu H, Zhou B, et al. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine. 2014;32(48):6485–92.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Coleman CM, Liu YV, Mu H, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169–74.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Reimer JM, Karlsson KH, Lövgren-Bengtsson K, Magnusson SE, Fuentes A, Stertman L. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One. 2012;7(7):e41451.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Thomas DN. RSV-F vaccine and influenza vaccine co-administration study in the elderly. 2014.Google Scholar
  104. 104.
    Sridhar S. Clinical development of Ebola vaccines. Therapeutic advances in vaccines. 2015;3(5–6):125–38.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Grippin AJ, Sayour EJ, Mitchell DA. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology. 2017;6(10):e1290036.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Alamoudi K, Martins P, Croissant JG, Patil S, Omar H, Khashab NM. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine. 2017;12(12):1421–33.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artificial cells, nanomedicine, and biotechnology. 2016;44(1):381–91.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Yaroslavov AA, Efimova AA, Sybachin AV, Chvalun SN, Kulebyakina AI, Kozlova EV. Biodegradable multi-liposomal containers. RSC Adv. 2015;5(40):31460–4.CrossRefGoogle Scholar
  109. 109.
    Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10(1):975–99.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Butts C, Murray N, Maksymiuk A, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non–small-cell lung cancer. J Clin Oncol. 2005;23(27):6674–81.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kruit WH, Suciu S, Dreno B, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer melanoma Group in Metastatic Melanoma. J Clin Oncol. 2013;31(19):2413–20.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Berinstein NL, Karkada M, Morse MA, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 2012;10(1):156.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Berinstein NL, Karkada M, Oza AM, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4(8):e1026529.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kitano S, Kageyama S, Nagata Y, et al. HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Can Res. 2006;12(24):7397–405.CrossRefGoogle Scholar
  115. 115.
    Wada H, Sato E, Uenaka A, et al. Analysis of peripheral and local anti-tumor immune response in esophageal cancer patients after NY-ESO-1 protein vaccination. Int J Cancer. 2008;123(10):2362–9.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Maraskovsky E, Schnurr M, Wilson NS, Robson NC, Boyle J, Drane D. Development of prophylactic and therapeutic vaccines using the ISCOMATRIX adjuvant. Immunol Cell Biol. 2009;87(5):371–6.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Speiser DE, Schwarz K, Baumgaertner P, et al. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. J Immunother. 2010;33(8):848–58.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bendandi M, Gocke CD, Kobrin CB, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte–monocyte colony-stimulating factor against lymphoma. Nat Med (NY, NY, US). 1999;5(10):1171.CrossRefGoogle Scholar
  119. 119.
    Altin J, Atmosukarto I, De Wildt RM, Parish C, Price J. Composition for targeting dendritic cells. Google Patents; 2014.Google Scholar
  120. 120.
    Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Thomas DN. Safety and immunogenicity of the RSV-F vaccine in older adults previously treated with the same vaccine or placebo in the prior year. 2017.Google Scholar
  122. 122.
    Thomas DN. Study to evaluate the immunogenicity and safety of an Ebola virus (EBOV) glycoprotein (GP) vaccine in healthy subjects. 2016.Google Scholar
  123. 123.
    Thomas DN. Evaluation of the safety and immunogenicity of a recombinant trivalent nanoparticle influenza vaccine with matrix M-1 adjuvant (NanoFlu). 2018.Google Scholar
  124. 124.
    Thomas DN. A Phase I Randomized, Observer-Blinded, Dose-Ranging Study in Healthy Subjects 24 to <72 Months of Age. 2016.Google Scholar
  125. 125.
    Thomas DN. A study to determine the safety and efficacy of the RSV F vaccine to protect infants via maternal immunization. 2018.Google Scholar
  126. 126.
    Thomas DN. RSV F Vaccine maternal immunization study in healthy third-trimester pregnant women. 2017.Google Scholar
  127. 127.
    Thomas DN. RSV-F vaccine dose ranging study in young women. 2014.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  • Achraf Noureddine
    • 1
  • Jonas G. Croissant
    • 1
  • Harrison O. Davis
    • 1
    • 2
  • Lorenza I. Friedrich
    • 1
  • Rita E. Serda
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Chemistry and BiochemistryKent State UniversityKentUSA

Personalised recommendations