Advertisement

Buccal Delivery of Nanoparticles

  • Andrea C. Ortiz
  • Javier O. MoralesEmail author
Chapter
  • 52 Downloads
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 41)

Abstract

The buccal route offers an alternative for drug administration due to its advantages, including the avoidance of the gastrointestinal tract, the hepatic first-pass, enzymatic degradation and chemical instability of certain molecules that would pose a challenge to formulate orally. Moreover, the oral cavity has a lower enzyme content than the rest of the gastrointestinal tract, predictable transit times, easy administration, and provides the opportunity to readily halt drug administration. Additionally, the oral cavity is an organized system with stratified epithelium that allows manufacturing of pharmaceutical forms for drug delivery.

Due to the possibilities offered by this route, recent research efforts have been conducted towards the use of nanotechnology to enable buccal drug delivery. In this chapter, we discuss the anatomy of the oral cavity, relevant characteristics of the epithelium to drug delivery and delivery system permeation, types of nanocarriers that have been reported to-date and toxicity studies addressing nanotechnology.

Keywords

Buccal absorption Nanocarriers Nanoparticle safey Ex vivo permeation Mucoadhesion Buccal drug delivery 

Notes

Acknowledgments

The authors acknowledge the financial support of FONDECYT 1181689, FONDAP 15130011, and CONICYT 21180654.

References

  1. 1.
    Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007 Jul 1;4(4):403–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Fernandes GJ, Kumar L, Sharma K, Tunge R, Rathnanand M. A review on solubility enhancement of carvedilol—a BCS class II drug. J Pharm Innov. 2018 Sep 1;13(3):197–212.CrossRefGoogle Scholar
  3. 3.
    Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romañach RJ, Michniak-Kohn B, et al. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS class II drug nanoparticles for pharmaceutical applications. Int J Pharm. 2012 Feb 28;423(2):496–508.CrossRefPubMedGoogle Scholar
  4. 4.
    Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv Drug Deliv Rev. 2014 Jun 30;73:50–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011 Feb 1;77(2):187–99.CrossRefPubMedGoogle Scholar
  6. 6.
    Mahmoud GA, Ali AE-H, Raafat AI, Badawy NA, Elshahawy MF. Development of (acrylic acid/ polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl. Radiat Phys Chem. 2018 Jun 1;147:18–26.CrossRefGoogle Scholar
  7. 7.
    Mandel ID. The functions of saliva, the functions of saliva. J Dent Res. 1987 Feb 1;66(2_suppl):623–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol. 2017 Oct 1;36:22–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Morales JO, Huang S, Williams RO, McConville JT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf B Biointerfaces. 2014 Oct 1;122:38–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal Mucoadhesive films as drug delivery Systems for Biologics. AAPS PharmSciTech. 2017 Jan 1;18(1):3–14.CrossRefPubMedGoogle Scholar
  11. 11.
    Bir Pawan Kumar∗ and Sandeep Kumar. Fast dissolving films: an innovative approach to oral drug delivery. INDO Am J Pharm Sci 2018 May 12;05(05):3714–3719.Google Scholar
  12. 12.
    Teubl BJ, Stojkovic B, Docter D, Pritz E, Leitinger G, Poberaj I, et al. The effect of saliva on the fate of nanoparticles. Clin Oral Investig. 2018 Mar 1;22(2):929–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Konstantinova V, Ibrahim M, Lie SA, Birkeland ES, Neppelberg E, Marthinussen MC, et al. Nano-TiO2 penetration of oral mucosa: in vitro analysis using 3D organotypic human buccal mucosa models. J Oral Pathol Med. 2017 Mar;46(3):214–22.CrossRefPubMedGoogle Scholar
  14. 14.
    Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000 Jul 3;50(1):161–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002 Nov 1;54:S131–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Schuh RS, Bruxel F, Teixeira HF. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization. Quím Nova. 2014;37(7):1193–8.Google Scholar
  17. 17.
    Marques AC, Rocha AI, Leal P, Estanqueiro M, Lobo JMS. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int J Pharm. 2017 Nov 30;533(2):455–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C. 2016 Nov 1;68:982–94.CrossRefGoogle Scholar
  19. 19.
    Ezzati Nazhad Dolatabadi J, Omidi Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends Anal Chem. 2016 Mar;77:100–8.CrossRefGoogle Scholar
  20. 20.
    Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol. 2013 Jul 1;19(Supplement C):29–43.CrossRefGoogle Scholar
  21. 21.
    Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015 May 9;17(5):1041–54.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Arriagada F, Correa O, Günther G, Nonell S, Mura F, Olea-Azar C, et al. Morin flavonoid adsorbed on mesoporous silica, a novel antioxidant nanomaterial. PLoS One. 2016 Nov 3;11(11):e0164507.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: trials, tribulations and promise. Curr Opin Colloid Interface Sci. 2014 Apr 1;19(2):49–55.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Choi JS, Han S-H, Hyun C, Yoo HS. Buccal adhesive nanofibers containing human growth hormone for oral mucositis. J Biomed Mater Res B Appl Biomater. 104(7):1396–406.Google Scholar
  25. 25.
    Raafat AI, Mahmoud GA, Ali AE-H, Badawy NA, Elshahawy MF. In vitro evaluation of mucoadhesive and self-disinfection efficiency of (acrylic acid/polyethylene glycol)-silver nanocomposites for buccal drug delivery, in vitro evaluation of mucoadhesive and self-disinfection efficiency of (acrylic acid/polyethylene glycol)-silver nanocomposites for buccal drug delivery. J Bioact Compat Polym. 2018 Jan 1;33(1):95–115.CrossRefGoogle Scholar
  26. 26.
    Freag MS, Saleh WM, Abdallah OY. Laminated chitosan-based composite sponges for transmucosal delivery of novel protamine-decorated tripterine phytosomes: ex-vivo mucopenetration and in-vivo pharmacokinetic assessments. Carbohydr Polym. 2018 May 15;188:108–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Suh JW, Lee J-S, Ko S, Lee HG. Preparation and characterization of mucoadhesive buccal nanoparticles using chitosan and dextran sulfate. J Agric Food Chem. 2016 Jul 6;64(26):5384–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Mørck Nielsen H, Rømer RM. TR146 cells grown on filters as a model of human buccal epithelium: v. enzyme activity of the TR146 cell culture model, human buccal epithelium and porcine buccal epithelium, and permeability of leu-enkephalin. Int J Pharm. 2000 May 10;200(2):261–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release. 2011 Jul 30;153(2):106–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Montero-Padilla S, Velaga S, Morales JO. Buccal dosage forms: general considerations for pediatric patients. AAPS PharmSciTech. 2017 Feb 1;18(2):273–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Ten NA. Cate’s Oral histology – E-book: development, structure, and function: Elsevier Health Sciences; 2014. 407 p.Google Scholar
  32. 32.
    Squier CA. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res. 1973 Jan 1;43(1):160–77.CrossRefPubMedGoogle Scholar
  33. 33.
    Kinikoglu B, Damour O, Hasirci V. Tissue engineering of oral mucosa: a shared concept with skin. J Artif Organs. 2015 Mar 1;18(1):8–19.CrossRefPubMedGoogle Scholar
  34. 34.
    Collins LMC, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and Oral mucosa. J Dent Res. 1987 Aug 1;66(8):1300–2.CrossRefPubMedGoogle Scholar
  35. 35.
    de Vries ME, Boddé HE, Verhoef JC, Junginger HE. Developments in buccal drug delivery. Crit Rev Ther Drug Carrier Syst. 1991;8(3):271–303.PubMedGoogle Scholar
  36. 36.
    Goodman CH, Squier CA. Blood flow in the oral mucosa of normal and atherosclerotic rhesus monkeys. J Oral Pathol Med. 17(1):34–8.Google Scholar
  37. 37.
    Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin. Adv Drug Deliv Rev. 1993 Oct 1;12(1):1–12.CrossRefGoogle Scholar
  38. 38.
    Squier CA, Wertz PW. Permeability and the pathophysiology of oral mucosa. Adv Drug Deliv Rev. 1993 Oct 1;12(1):13–24.CrossRefGoogle Scholar
  39. 39.
    Goswami T, Jasti BR, Li X. Sublingual drug delivery. Crit Rev Ther Drug Carr Syst. 2008;25(5)Google Scholar
  40. 40.
    Shklar G. The effects of aging upon oral mucosa. J Invest Dermatol. 1966 Aug;47(2):115–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Abu Eid R, Sawair F, Landini G, Saku T. Age and the architecture of oral mucosa. Age. 2012 Jun;34(3):651–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Hill MW. Influence of age on the morphology and transit time of murine stratified squamous epithelia. Arch Oral Biol. 1988 Jan 1;33(4):221–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm. 2010 Mar;36(3):254–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Squier C, Wertz P. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone M, Swarbrick J, editors. Oral mucosal drug delivery. New York: Marcel Dekker, Inc.; 1996. p. 1–26.Google Scholar
  45. 45.
    Semalty M, Semalty A, Kumar G. Formulation and characterization of mucoadhesive buccal films of glipizide. Indian J Pharm Sci. 2008;70(1):43–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shidhaye SS, Saindane NS, Sutar S, Kadam V. Mucoadhesive bilayered patches for administration of sumatriptan succinate. AAPS PharmSciTech. 2008 Aug 5;9(3):909–16.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Satishbabu BK, Srinivasan BP. Preparation and evaluation of buccoadhesive films of atenolol. Indian J Pharm Sci. 2008;70(2):175–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nappinnai M, Chandanbala R, Balaijirajan R. Formulation and evaluation of nitrendipine buccal films. Indian J Pharm Sci. 2008;70(5):631–5.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Diaz del Consuelo I, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release Off J Control Release Soc. 2007 Sep 26;122(2):135–40.CrossRefGoogle Scholar
  50. 50.
    Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018 Mar 1;101:112–23.CrossRefPubMedGoogle Scholar
  51. 51.
    Mouftah S, Abdel-Mottaleb MMA, Lamprecht A. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles. Int J Pharm. 2016 Dec 30;515(1):565–74.CrossRefPubMedGoogle Scholar
  52. 52.
    Martín MJ, Calpena AC, Fernández F, Mallandrich M, Gálvez P, Clares B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr Polym. 2015 Mar 6;117:140–9.CrossRefPubMedGoogle Scholar
  53. 53.
    El-Nahas AE, Allam AN, El-Kamel AH. Mucoadhesive buccal tablets containing silymarin Eudragit-loaded nanoparticles: formulation, characterisation and ex vivo permeation. J Microencapsul. 2017 Jul 4;34(5):463–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Hazzah HA, Farid RM, Nasra MMA, Hazzah WA, El-Massik MA, Abdallah OY. Gelucire-based nanoparticles for curcumin targeting to oral mucosa: preparation, characterization, and antimicrobial activity assessment. J Pharm Sci. 2015 Nov 1;104(11):3913–24.CrossRefPubMedGoogle Scholar
  55. 55.
    Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012 Mar 1;13(1):159–66.CrossRefPubMedGoogle Scholar
  56. 56.
    Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017 Nov;20:9(4).Google Scholar
  57. 57.
    Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012 Jul 20;161(2):351–62.CrossRefPubMedGoogle Scholar
  58. 58.
    Kontogiannidou E, Andreadis DA, Zografos AL, Nazar H, Klepetsanis P, van der Merwe SM, et al. Ex vivo buccal drug delivery of ropinirole hydrochloride in the presence of permeation enhancers: the effect of charge. Pharm Dev Technol. 2017 Nov 17;22(8):1017–21.CrossRefPubMedGoogle Scholar
  59. 59.
    Haque T, Talukder MMU. Chemical enhancer: a simplistic way to modulate barrier function of the stratum Corneum. Adv Pharm Bull. 2018 Jun;8(2):169–79.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jain S, Indulkar A, Harde H, Agrawal AK. Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol. 2014 Jun;10(6):932–47.CrossRefPubMedGoogle Scholar
  61. 61.
    Mauro M, Crosera M, Bianco C, Bellomo F, Bovenzi M, Adami G, et al. In vitro permeability of silver nanoparticles through porcine oromucosal membrane. Colloids Surf B Biointerfaces. 2015 Aug 1;132:10–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Teubl BJ, Leitinger G, Schneider M, Lehr C-M, Fröhlich E, Zimmer A, et al. The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicology. 2015 Feb 17;9(2):253–61.CrossRefPubMedGoogle Scholar
  63. 63.
    Roblegg E, Fröhlich E, Meindl C, Teubl B, Zaversky M, Zimmer A. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology. 2012 Jun 1;6(4):399–413.CrossRefPubMedGoogle Scholar
  64. 64.
    Teubl BJ, Meindl C, Eitzlmayr A, Zimmer A, Fröhlich E, Roblegg E. In-Vitro permeability of neutral polystyrene particles via buccal mucosa. Small. 9(3):457–66.Google Scholar
  65. 65.
    Mašek J, Lubasová D, Lukáč R, Turánek-Knotigová P, Kulich P, Plocková J, et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles – important step towards effective mucosal vaccines. J Control Release. 2017 Mar 10;249:183–95.CrossRefPubMedGoogle Scholar
  66. 66.
    Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int J Nanomedicine. 2015 Feb 23;10:1569–84.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Forstner J, Taichman N, Kalnins V, Forstner G. Intestinal goblet cell mucus: isolation and identification by immunofluorescence of a goblet cell glycoprotein. J Cell Sci. 1973 Mar 1;12(2):585–601.PubMedGoogle Scholar
  68. 68.
    Morales JO, McConville JT. Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm. 2014 May 1;40(5):579–90.CrossRefPubMedGoogle Scholar
  69. 69.
    Horowitz M, Ward P. The Glycoconjugates. In: Mammalian glycoproteins and glycolipids: Elsevier; 2012. 579 p.Google Scholar
  70. 70.
    Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005 Nov 3;57(11):1569–82.CrossRefPubMedGoogle Scholar
  71. 71.
    George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. J Control Release. 2006 Aug 10;114(1):1–14.CrossRefPubMedGoogle Scholar
  72. 72.
    Vllasaliu D, Exposito-Harris R, Heras A, Casettari L, Garnett M, Illum L, et al. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution. Int J Pharm. 2010 Nov 15;400(1):183–93.CrossRefPubMedGoogle Scholar
  73. 73.
    Boddupalli BM, Mohammed ZNK, Nath RA, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1(4):381–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005 Nov 3;57(11):1666–91.CrossRefPubMedGoogle Scholar
  75. 75.
    Tejada G, Piccirilli GN, Sortino M, Salomón CJ, Lamas MC, Leonardi D. Formulation and in-vitro efficacy of antifungal mucoadhesive polymeric matrices for the delivery of miconazole nitrate. Mater Sci Eng C. 2017 Oct 1;79:140–50.CrossRefGoogle Scholar
  76. 76.
    Reda RI, Wen MM, El-Kamel AH. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine. 2017 Mar 27;12:2335–51.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wen H. Park K, Oral controlled release formulation design and drug delivery: theory to practice: Wiley; 2011. 376 p.Google Scholar
  78. 78.
    Elkomy MH, Menshawe SFE, Abou-Taleb HA, Elkarmalawy MH. Loratadine bioavailability via buccal transferosomal gel: formulation, statistical optimization, in vitro/in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv. 2017 Jan 1;24(1):781–91.CrossRefPubMedGoogle Scholar
  79. 79.
    Abruzzo A, Cerchiara T, Bigucci F, Gallucci MC, Luppi B. Mucoadhesive buccal tablets based on chitosan/gelatin microparticles for delivery of propranolol hydrochloride. J Pharm Sci. 2015 Dec 1;104(12):4365–72.CrossRefPubMedGoogle Scholar
  80. 80.
    Donnelly RF, McCarron PA, Tunney MM, David WA. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B. 2007 Jan 3;86(1):59–69.CrossRefPubMedGoogle Scholar
  81. 81.
    Singh S, Jain S, Muthu MS, Tiwari S, Tilak R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. AAPS PharmSciTech. 2008 Jun 1;9(2):660–7.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Montenegro-Nicolini M, Miranda V, Morales JO. Inkjet printing of proteins: an experimental approach. AAPS J. 2017 Jan 1;19(1):234–43.CrossRefPubMedGoogle Scholar
  83. 83.
    Fritz H, Ortiz AC, Morales JO. Development of nifedipine-loaded nanoemulsions as Inks for Inkjet Printing of a BCS Class II Drug. In: AAPS Annual Meeting and Exposition. Denver, CO, USA; 2016, 2016.Google Scholar
  84. 84.
    Kraisit P, Limmatvapirat S, Luangtana-Anan M, Sriamornsak P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian J Pharm Sci. 2018 Jan 1;13(1):34–43.CrossRefPubMedGoogle Scholar
  85. 85.
    Hu D, Wang H, Wang L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT – Food Sci Technol. 2016 Jan 1;65:398–405.CrossRefGoogle Scholar
  86. 86.
    Nair AB, Al-ghanna AA, Al-Dhubiab BE, Hasan AA. Mucoadhesive film embedded with acyclovir loaded biopolymeric nanoparticles: in vitro studies. J Young Pharm. 2017;9(1):100–5.CrossRefGoogle Scholar
  87. 87.
    Barzoki ZM, Emam-Djomeh Z, Mortazavian E, Moosavi-Movahedi AA, Tehrani MR. Formulation, in vitro evaluation and kinetic analysis of chitosan–gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles. J Microencapsul. 2016 Oct 2;33(7):613–24.CrossRefGoogle Scholar
  88. 88.
    Kianfar F, Chowdhry BZ, Antonijevic MD, Boateng JS. Novel films for drug delivery via the buccal mucosa using model soluble and insoluble drugs. Drug Dev Ind Pharm. 2012 Oct 1;38(10):1207–20.CrossRefPubMedGoogle Scholar
  89. 89.
    Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B Biointerfaces. 2013 Dec 1;112:9–15.CrossRefPubMedGoogle Scholar
  90. 90.
    Velten T, Schuck H, Knoll T, Scholz O, Schumacher A, Göttsche T, et al. Intelligent intraoral drug delivery microsystem. Proc Inst Mech Eng Part C J Mech Eng Sci. 2006 Nov 1;220(11):1609–17.CrossRefGoogle Scholar
  91. 91.
    Li H, Yu Y, Dana SF, Li B, Lee C-Y, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target. 2013 Aug 1;21(7):611–29.CrossRefPubMedGoogle Scholar
  92. 92.
    Andreani T, Kiill CP, de Souza ALR, Fangueiro JF, Fernandes L, Doktorovová S, et al. Surface engineering of silica nanoparticles for oral insulin delivery: characterization and cell toxicity studies. Colloids Surf B Biointerfaces. 2014 Nov 1;123:916–23.CrossRefPubMedGoogle Scholar
  93. 93.
    Iglesias T, López de Cerain A, Irache J, Martín-Arbella N, Wilcox M, Pearson J, et al. Evaluation of the cytotoxicity, genotoxicity and mucus permeation capacity of several surface modified poly(anhydride) nanoparticles designed for oral drug delivery. Int J Pharm. 2017 Jan 30;517(1):67–79.CrossRefPubMedGoogle Scholar
  94. 94.
    Klemetsrud T, Kjøniksen A-L, Hiorth M, Jacobsen J, Smistad G. Polymer coated liposomes for use in the oral cavity – a study of the in vitro toxicity, effect on cell permeability and interaction with mucin. J Liposome Res. 2018 Jan 2;28(1):62–73.CrossRefPubMedGoogle Scholar
  95. 95.
    Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, et al. Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res. 2015 Feb;25(2):237–53.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Juliano C, Galleri G, Klemetsrud T, Karlsen J, Giunchedi P. Effect of chitosan malate on viability and cytoskeletal structures morphology of Caco-2 cells. Int J Pharm. 2011 Nov 28;420(2):223–30.CrossRefPubMedGoogle Scholar
  97. 97.
    Huang M, Khor E, Lim L-Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004 Feb;21(2):344–53.CrossRefPubMedGoogle Scholar
  98. 98.
    Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010 Jan 31;62(1):3–11.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  1. 1.Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical SciencesUniversity of ChileSantiagoChile
  2. 2.Advanced Center for Chronic Diseases (ACCDiS)SantiagoChile
  3. 3.Pharmaceutical and Biomaterial Research Group, Department of Health SciencesLuleå University of TechnologyLuleåSweden

Personalised recommendations