Overview of the Advantages and Disadvantages of Different Mucosal Sites for the Delivery of Nanoparticles

Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 41)


Nanoparticles (NPs) often improve the efficacy of therapeutic actives, and their delivery to mucosal sites allows for unique and localized effects compared to parenteral delivery. Sites of mucosal surfaces includes the eyes, nasal cavity, lungs, and the entire gastrointestinal tract from mouth to anus, and offers extensive areas for the delivery of therapeutics. However, each mucosal site has unique physiological properties that affect aspects such as stability during the transit to the mucosal surface, release of the active molecules, and absorption of NPs into the body. The required NPs properties also differ based on if the goal is for absorption of intact NPs or release of the active molecules at the mucosal site. Therefore, the interaction of the NPs, with the medium that is in contact with the mucosal surface, the mucus layer, and the epithelial cells, must be considered during the formulation process. This chapter focusses on the advantages and disadvantages of delivering NPs through each major mucosal site and offers indications on NPs properties that may be ideal for each site.


Mucosal delivery Nanoparticles Ocular Nasal Lung Oral Vaginal 



Chronic Obstructive Pulmonary Disease




Gut-Associated Lymphoid Tissue




Mucosa-Associated Lymphoid Tissue




Nasal-Associated Lymphoid Tissue


Peyer’s Patch


  1. 1.
    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.CrossRefPubMedGoogle Scholar
  2. 2.
    des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006;116(1):1–27.Google Scholar
  3. 3.
    Laffleur F, Bernkop-Schnürch A. Strategies for improving mucosal drug delivery. Nanomedicine. 2013;8(12):2061–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems--recent advances. Prog Retin Eye Res. 1998;17(1):33–58.CrossRefPubMedGoogle Scholar
  6. 6.
    McNamara NA, Polse KA, Brand RJ, Graham AD, Chan JS, McKenney CD. Tear mixing under a soft contact lens: effects of lens diameter. Am J Ophthalmology. 1999;127(6):659–65.CrossRefGoogle Scholar
  7. 7.
    Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: anatomy, physiology and barriers to drug delivery. In: Mitra AK, editor. Ocular Transporters and Receptors: Woodhead Publishing; 2013. p. 1–36.Google Scholar
  8. 8.
    Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res. 2004;23(3):253–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Li Y, Cheng Q, Jiang Q, Huang Y, Liu H, Zhao Y, et al. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J Control Release. 2014;176:104–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Gower NJD, Barry RJ, Edmunds MR, Titcomb LC, Denniston AK. Drug discovery in ophthalmology: past success, present challenges, and future opportunities. BMC Ophthalmol. 2016;16:11.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Biswas GR, Majee SB. Niosomes in ocular drug delivery. Eur J Pharm Med Res. 2017;4(7):813–9.Google Scholar
  12. 12.
    Lang J, Roehrs R, Remington JR. Ophthalmic preparations. In: Wilkins LW, editor. The Science and Practice of Pharmacy 2009. p. 850–856.Google Scholar
  13. 13.
    Bourges J-L, Gautier SE, Delie F, Bejjani RA, Jeanny J-C, Gurny R, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using Polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44(8):3562–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery: corneal penetration and absorption. J Control Release. 2000;63(1):135–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamaguchi M, Ueda K, Isowaki A, Ohtori A, Takeuchi H, Ohguro N, et al. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biol Pharm Bull. 2009;32(7):1266–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, et al. Surface-modified Nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10(1):34.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sachan AK, Singh S. Nanoparticles: nasal delivery of drugs. Int J Pharm Res Sch. 2014;3(3):33–44.Google Scholar
  19. 19.
    Ghori MU, Mahdi MH, Smith AM, Conway BR. Nasal Drug Delivery Systems: An Overview. Am J Pharmacoll Sci. 2015;3(5):110–9.Google Scholar
  20. 20.
    Battaglia L, Panciani PP, Muntoni E, Capucchio MT, Biasibetti E, De Bonis P, et al. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opinion Drug Delivery. 2018;15(4):369–78.CrossRefGoogle Scholar
  21. 21.
    Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96(3):473–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. (Basel). 2009;14(9):3754–79.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Comfort C, Garrastazu G, Pozzoli M, Sonvico F. Opportunities and challenges for the nasal administration of nanoemulsions. Curr Top Med Chem. 2015;15(4):356–68.CrossRefPubMedGoogle Scholar
  24. 24.
    Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200.CrossRefPubMedGoogle Scholar
  25. 25.
    Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - the potential of nanotechnology. Bioorg Med Chem. 2018;26(10):2888–905.CrossRefPubMedGoogle Scholar
  26. 26.
    Shoyele SA, Slowey A. Prospects of formulating proteins/peptides as aerosols for pulmonary drug delivery. Int J Pharm. 2006;314(1):1–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res. 2013;30(2):325–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Gaul R, Ramsey JM, Heise A, Cryan S-A, Greene CM. Nanotechnology approaches to pulmonary drug delivery: Targeted delivery of small molecule and gene-based therapeutics to the lung. In: Grumezescu AM, editor. Design of Nanostructures for Versatile Therapeutic Applications: William Andrew Publishing; 2018. p. 221–53.Google Scholar
  29. 29.
    Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv. 2018;15(8):821–34.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tawfeek HM, Evans AR, Iftikhar A, Mohammed AR, Shabir A, Somavarapu S, et al. Dry powder inhalation of macromolecules using novel PEG-co-polyester microparticle carriers. Int J Pharm. 2013;441(1–2):611–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Tawfeek H, Khidr S, Samy E, Ahmed S, Murphy M, Mohammed A, et al. Poly(glycerol adipate-co-omega-pentadecalactone) spray-dried microparticles as sustained release carriers for pulmonary delivery. Pharm Res. 2011;28(9):2086–97.CrossRefPubMedGoogle Scholar
  32. 32.
    Alfagih I, Kunda N, Alanazi F, Dennison SR, Somavarapu S, Hutcheon GA, et al. Pulmonary delivery of proteins using nanocomposite microcarriers. J Pharm Sci. 2015;104(12):4386–98.CrossRefPubMedGoogle Scholar
  33. 33.
    Kunda NK, Alfagih IM, Dennison SR, Tawfeek HM, Somavarapu S, Hutcheon GA, et al. Bovine serum albumin adsorbed PGA-co-PDL nanocarriers for vaccine delivery via dry powder inhalation. Pharm Res. 2015;32(4):1341–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Bisgaard H, O’Callaghan C, Smaldone G. Drug delivery to the lung: Boca Raton: CRC Press; 1999.Google Scholar
  35. 35.
    Mason GR, Peters AM, Bagdades E, Myers MJ, Snooks D, Hughes J. Evaluation of pulmonary alveolar epithelial integrity by the detection of restriction to diffusion of hydrophilic solutes of different molecular sizes. Clin Sci. 2001;100(3):231–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Nicod LP. Lung defences: an overview. European Respiratory Review: An Official Journal of the European Respiratory Society. 2005;14(95):45–50.CrossRefGoogle Scholar
  37. 37.
    Gordon S, Read R. Macrophage defences against respiratory tract infections. Br Med Bull. 2006;61:45–61.CrossRefGoogle Scholar
  38. 38.
    Rodrigues TC, Oliveira MLS, Soares-Schanoski A, Chavez-Rico SL, Figueiredo DB, Goncalves VM, et al. Mucosal immunization with PspA (pneumococcal surface protein a)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One. 2018;13(1):e0191692.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lu X, Zhu T, Chen C, Liu Y. Right or left: the role of nanoparticles in pulmonary diseases. Int J Mol Sci. 2014;15(10):17577–600.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kunda NK, Alfagih IM, Miyaji EN, Figueiredo DB, Goncalves VM, Ferreira DM, et al. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm. 2015;495(2):903–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Kunda NK, Alfagih IM, Dennison SR, Somavarapu S, Merchant Z, Hutcheon GA, et al. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein. Int J Pharm. 2015;492(1–2):213–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release. 2015;219:622–31.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Petkar KC, Chavhan S, Kunda N, Saleem I, Somavarapu S, Taylor KMG, et al. Development of novel Octanoyl chitosan nanoparticles for improved rifampicin pulmonary delivery: optimization by factorial design. AAPS PharmSciTech. 2018;19(4):1758–72.CrossRefPubMedGoogle Scholar
  44. 44.
    Merchant Z, Buckton G, Taylor KM, Stapleton P, Saleem IY, Zariwala MG, et al. A new era of pulmonary delivery of Nano-antimicrobial therapeutics to treat chronic pulmonary infections. Curr Pharm Des. 2016;22(17):2577–98.CrossRefPubMedGoogle Scholar
  45. 45.
    Merchant Z, Taylor KMG, Stapleton P, Razak SA, Kunda N, Alfagih I, et al. Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. Eur J Pharm Biopharm. 2014;88(3):816–29.CrossRefPubMedGoogle Scholar
  46. 46.
    Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–73.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kleinstreuer C, Zhang Z, Donohue JF. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10:195–220.CrossRefPubMedGoogle Scholar
  48. 48.
    Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–18.CrossRefPubMedGoogle Scholar
  49. 49.
    Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: from the mouth to the colon. Int J Pharm. 2010;395(1):44–52.CrossRefPubMedGoogle Scholar
  50. 50.
    Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–26.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Holpuch AS, Hummel GJ, Tong M, Seghi GA, Pei P, Ma P, et al. Nanoparticles for local drug delivery to the Oral mucosa: proof of principle studies. Pharm Res. 2010;27(7):1224–36.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Al-Dhubiab BE. In vitro and in vivo evaluation of nano-based films for buccal delivery of zolpidem. Braz Oral Res. 2016;30:e126.CrossRefPubMedGoogle Scholar
  53. 53.
    Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine. 2014;9:3719–35.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang K, Liu T, Lin R, Liu B, Yang G, Bu X, et al. Preparation and in vitro release of buccal tablets of naringenin-loaded MPEG-PCL nanoparticles. RSC Adv. 2014;4(64):33672–9.CrossRefGoogle Scholar
  55. 55.
    Roque L, Castro P, Molpeceres J, Viana AS, Roberto A, Reis C, et al. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur Polym J. 2018;104:19–31.CrossRefGoogle Scholar
  56. 56.
    Mašek J, Lubasová D, Lukáč R, Turánek-Knotigová P, Kulich P, Plocková J, et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. J Control Release. 2017;249:183–95.CrossRefPubMedGoogle Scholar
  57. 57.
    Humphrey SP, Williamson RT. A review of saliva: Normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Suh JW, Lee J-S, Ko S, Lee HG. Preparation and characterization of Mucoadhesive buccal nanoparticles using chitosan and dextran sulfate. J Agric Food Chem. 2016;64(26):5384–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Kraisit P, Limmatvapirat S, Luangtana-Anan M, Sriamornsak P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian Journal of Pharmaceutical Sciences. 2018;13(1):34–43.CrossRefPubMedGoogle Scholar
  60. 60.
    Marques AC, Rocha AI, Leal P, Estanqueiro M, Lobo JMS. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int J Pharm. 2017;533(2):455–62.CrossRefPubMedGoogle Scholar
  61. 61.
    Fonseca-Santos B, Chorilli M. An overview of polymeric dosage forms in buccal drug delivery: state of art, design of formulations and their in vivo performance evaluation. Mater Sci Eng C. 2018;86:129–43.CrossRefGoogle Scholar
  62. 62.
    Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65(6):822–32.CrossRefPubMedGoogle Scholar
  63. 63.
    Zimmer A. Drug Targeting Technology, Physical·Chemical·Biological Methods, Edited by Hans Schreier. ChemBioChem. 2002;3(6):581.Google Scholar
  64. 64.
    Jia L. Nanoparticle formulation increases Oral bioavailability of poorly soluble drugs: approaches experimental evidences and theory. Curr Nanosci. 2005;1(3):237–43.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deli Rev. 2016;99(Pt A):28–51.Google Scholar
  66. 66.
    Kaneko K, McDowell A, Ishii Y, Hook S. Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. J Liposome Res. 2017:1–9.Google Scholar
  67. 67.
    McGhee JR, Mestecky J, Dertzbaugh MT, Eldridge JH, Hirasawa M, Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88.CrossRefPubMedGoogle Scholar
  68. 68.
    Kuolee R, Chen W. M cell-targeted delivery of vaccines and therapeutics. Expert Opinion Drug Delivery. 2008;5(6):693–702.CrossRefGoogle Scholar
  69. 69.
    Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing Oral vaccine potency by targeting intestinal M cells. PLoS Pathog. 2010;6(11):e1001147.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Taira MC, Chiaramoni NS, Pecuch KM, Alonso-Romanowski S. Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv. 2004;11(2):123–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Chen M-C, Sonaje K, Chen K-J, Sung H-W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32(36):9826–38.CrossRefPubMedGoogle Scholar
  72. 72.
    Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharmaceutical Journal. 2016;24(4):413–28.CrossRefPubMedGoogle Scholar
  73. 73.
    Tawfeek HM, Abdellatif AAH, Dennison TJ, Mohammed AR, Sadiq Y, Saleem IY. Colonic delivery of indometacin loaded PGA-co-PDL microparticles coated with Eudragit L100-55 from fast disintegrating tablets. Int J Pharm. 2017;531(1):80–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opinion Drug Delivery. 2004;1(1):141–63.CrossRefGoogle Scholar
  76. 76.
    Brayden DJ, Baird AW. Microparticle vaccine approaches to stimulate mucosal immunisation. Microbes Infect. 2001;3(10):867–76.CrossRefPubMedGoogle Scholar
  77. 77.
    das Neves J, Amaral MH, Bahia MF. Vaginal Drug Delivery. In: Pharmaceutical Manufacturing Handbook2007.Google Scholar
  78. 78.
    Vanic Z, Skalko-Basnet N. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci. 2013;50(1):29–41.CrossRefPubMedGoogle Scholar
  79. 79.
    Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1–2):57–67.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Patel GM, Patel PV. Novel vaginal anti-HIV drug delivery system of tenofovir disoproxil fumarate. Am J Pharmtech Res. 2011;1:366–83.Google Scholar
  81. 81.
    Peppas NA, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deliv Rev. 2004;56(11):1675–87.CrossRefPubMedGoogle Scholar
  82. 82.
    Andrews GP, Donnelly L, Jones DS, Curran RM, Morrow RJ, Woolfson AD, et al. Characterization of the rheological, Mucoadhesive, and drug release properties of highly structured gel platforms for intravaginal drug delivery. Biomacromolecules. 2009;10(9):2427–35.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    McGill SL, Smyth HDC. Disruption of the mucus barrier by topically applied exogenous particles. Mol Pharm. 2010;7(6):2280–8.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wang YY, Lai SK, So C, Schneider C, Cone R, Hanes J. Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLoS One. 2011;6(6):e21547.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.CrossRefPubMedGoogle Scholar
  87. 87.
    Ning M, Guo Y, Pan H, Yu H, Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv. 2005;12(6):399–407.CrossRefPubMedGoogle Scholar
  88. 88.
    Wu SY, Chang HI, Burgess M, McMillan NA. Vaginal delivery of siRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system. J Control Release. 2011;155(3):418–26.CrossRefPubMedGoogle Scholar
  89. 89.
    Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transll Med. 2012;4(138):138ra79.Google Scholar
  90. 90.
    Malavia NK, Zurakowski D, Schroeder A, Princiotto AM, Laury AR, Barash HE, et al. Liposomes for HIV prophylaxis. Biomaterials. 2011;32(33):8663–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wang L, Sassi AB, Patton D, Isaacs C, Moncla BJ, Gupta P, et al. Development of a liposome microbicide formulation for vaginal delivery of octylglycerol for HIV prevention. Drug Dev Ind Pharm. 2012;38(8):995–1007.CrossRefPubMedGoogle Scholar
  92. 92.
    Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine. (London, England). 2010;5(2):269–85.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  1. 1.Liverpool John Moores University, School of Pharmacy and Biomolecular SciencesLiverpoolUK

Personalised recommendations