Advertisement

Methods to Characterize Nanoparticles for Mucosal Drug Delivery

  • Kalpesh Vaghasiya
  • Ankur Sharma
  • Eupa Ray
  • Suneera Adlakha
  • Rahul Kumar VermaEmail author
Chapter
  • 22 Downloads
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 41)

Abstract

Physicochemical properties of the nanoparticles are associated to their in-vivo behavior including pharmacokinetic, bio-distribution, efficacy, and toxicity profiles. It is imperative to gain a comprehensive understanding of the nanoparticle properties through their characterization. Characterization of nanomaterials depends upon their unique physical and chemical properties with different level of complexity at molecular levels. Distinct properties of nanoparticles often hinder when standard methods of characterization of particles are used, which compromise the reliability and reproducibility of the outcome. Nano-therapeutics characterization depends on various aspects, including the encapsulated drug, delivery vehicles, disease, route of administration, dosing amount and its application. The precise control over nanoparticle properties need robust and advanced characterization techniques. Generally, characterization of nanoparticles is based on the composition, size- distribution, morphology, surface charge, purity and stability, using sophisticated techniques such as dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) etc. Mean particle size, morphology and surface charge of nanoparticles affect their physical stability, re-dispersibility and in-vivo biodistribution. This chapter summarizes the basic principles, associated challenges and practical concerns in standard and promising physicochemical techniques used for characterization of nanoparticles.

Keywords

Nano particles Mucosal delivery Characterization Composition Morphology Size Charge Interaction Stability 

References

  1. 1.
    Joshi, M.; Bhattacharyya, A.; Ali, S. W. Characterization techniques for nanotechnology applications in textiles. 2008.Google Scholar
  2. 2.
    Boegh M, Foged C, Müllertz A, Nielsen HM. Mucosal drug delivery: barriers, in vitro models and formulation strategies. Journal of Drug Delivery Science and Technology. 2013;23(4):383–91.CrossRefGoogle Scholar
  3. 3.
    Ong KJ, MacCormack TJ, Clark RJ, Ede JD, Ortega VA, Felix LC, Dang MK, Ma G, Fenniri H, Veinot JG, Goss GG. Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One. 2014;9(3):e90650.  https://doi.org/10.1371/journal.pone.0090650.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lin P-C, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32(4):711–26.CrossRefGoogle Scholar
  5. 5.
    Laffleur F, Bernkop-Schnürch A. Strategies for improving mucosal drug delivery. Nanomedicine. 2013;8(12):2061–75.CrossRefGoogle Scholar
  6. 6.
    Lu, Y.; Park, K. Appendix f: chapter ii. 5.16—drug delivery systems: H, Mucosal drug delivery.Google Scholar
  7. 7.
    Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–92.  https://doi.org/10.2217/nnm.16.5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 1997;14(11):1568–73.  https://doi.org/10.1023/a:1012126301290.CrossRefPubMedGoogle Scholar
  9. 9.
    Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.CrossRefGoogle Scholar
  10. 10.
    Patri A, Dobrovolskaia M, Stern S, McNeil S, Amiji M. Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. Nanotechnology for cancer therapy. 2007:105–38.Google Scholar
  11. 11.
    Norris DA, Puri N, Sinko PJ. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev. 1998;34(2–3):135–54.CrossRefGoogle Scholar
  12. 12.
    Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.  https://doi.org/10.1016/j.addr.2008.11.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci. 2006;90(2):296–303.CrossRefGoogle Scholar
  14. 14.
    Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine. 2014;9(1):121–34.  https://doi.org/10.2217/nnm.13.191.CrossRefPubMedGoogle Scholar
  15. 15.
    Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3–44.  https://doi.org/10.7150/thno.3463.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xu R. Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology. 2008;6(2):112–5.CrossRefGoogle Scholar
  17. 17.
    Clogston JD, Patri AK. Zeta potential measurement. In: Characterization of nanoparticles intended for drug delivery: Springer; 2011. p. 63–70.Google Scholar
  18. 18.
    Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems: Springer; 2016. p. 33–93.Google Scholar
  19. 19.
    Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev. 2004;56(4):459–80.  https://doi.org/10.1016/j.addr.2003.10.015.CrossRefPubMedGoogle Scholar
  20. 20.
    Menzel C, Bernkop-Schnurch A. Enzyme decorated drug carriers: targeted swords to cleave and overcome the mucus barrier. Adv Drug Deliv Rev. 2018;124:164–74.  https://doi.org/10.1016/j.addr.2017.10.004.CrossRefPubMedGoogle Scholar
  21. 21.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.CrossRefGoogle Scholar
  22. 22.
    Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.CrossRefGoogle Scholar
  23. 23.
    Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation; 2000.Google Scholar
  24. 24.
    Griffiths, P. C.; Cattoz, B.; Ibrahim, M. S.; Anuonye, J. C. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2015, 97 (Pt A), 218–222, doi:  https://doi.org/10.1016/j.ejpb.2015.05.004.
  25. 25.
    Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871–934.  https://doi.org/10.1039/c8nr02278j.CrossRefPubMedGoogle Scholar
  26. 26.
    Singh AK. Engineered nanoparticles: structure, properties and mechanisms of toxicity: Academic; 2015.Google Scholar
  27. 27.
    Luo Z. A practical guide to transmission Electron microscopy, volume II: advanced microscopy: Momentum Press; 2015.Google Scholar
  28. 28.
    Nagashima, K.; Zheng, J.; Parmiter, D.; Patri, A. K. Biological tissue and cell culture specimen preparation for TEM nanoparticle characterization. In Characterization of Nanoparticles Intended for Drug Delivery; Springer: 2011; pp 83–91.Google Scholar
  29. 29.
    Scalf J, West P, Part I. Introduction to nanoparticle characterization with AFM. Pacific Nanotechnology: Santa Clara (see www. nanoparticles. org/pdf/Scalf-West. pdf; 2006.Google Scholar
  30. 30.
    Cetin M, Atila A, Kadioglu Y. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech. 2010;11(3):1250–6.CrossRefGoogle Scholar
  31. 31.
    Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem. 2011;83(12):4453–88.CrossRefGoogle Scholar
  32. 32.
    Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112(4):2373–433.CrossRefGoogle Scholar
  33. 33.
    Ngo VKT, Nguyen HPU, Huynh TP, Tran NNP, Lam QV, Huynh TD. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157: H7. Adv Nat Sci Nanosci Nanotechnol. 2015;6(3):035015.CrossRefGoogle Scholar
  34. 34.
    Naderi M. Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET). In: Progress in Filtration and Separation: Academic; 2015. p. 585–608.Google Scholar
  35. 35.
    Ramalinga U, Clogston JD, Patri AK, Simpson JT. Characterization of nanoparticles by matrix assisted laser desorption ionization time-of-flight mass spectrometry. In: Characterization of nanoparticles intended for drug delivery: Springer; 2011. p. 53–61.Google Scholar
  36. 36.
    Sharma A, Vaghasiya K, Gupta P, Gupta UD, Verma RK. Reclaiming hijacked phagosomes: hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int J Pharm. 2018;536(1):50–62.CrossRefGoogle Scholar
  37. 37.
    Wang W, Zhang H, Kuzmenko I, Mallapragada S, Vaknin D. Assembling bare au nanoparticles at positively charged templates. Sci Rep. 2016;6:26462.CrossRefGoogle Scholar
  38. 38.
    Alex AT, Joseph A, Shavi G, Rao JV, Udupa N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv. 2016;23(7):2144–53.PubMedGoogle Scholar
  39. 39.
    Rolim T1, Cancino J, Zucolotto V. A nanostructured genosensor for the early diagnosis of systemic arterial hypertension. Biomed Microdevices. 2015 Feb;17(1):3.Google Scholar
  40. 40.
    Rahman M, Laurent S, Tawil N, Yahia LH, Mahmoudi M. Analytical methods for corona evaluations. In: Protein-Nanoparticle Interactions: Springer; 2013. p. 65–82.Google Scholar
  41. 41.
    Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–83.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  • Kalpesh Vaghasiya
    • 1
  • Ankur Sharma
    • 1
  • Eupa Ray
    • 1
  • Suneera Adlakha
    • 1
  • Rahul Kumar Verma
    • 1
    Email author
  1. 1.Institute of Nano Science and Technology (INST)MohaliIndia

Personalised recommendations