Advertisement

Toxicity of Nanomaterials to the Host and the Environment

  • Celine A. BeamerEmail author
Chapter
  • 22 Downloads
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 41)

Abstract

Although silver nanoparticles (AgNPs) display excellent antibacterial, antifungal, and antiviral properties; the pervasiveness of AgNPs in occupational, medicinal, consumer, and environmental settings has raised concerns about the potential for adverse health effects and environmental risks. We provide herein an overview of the use of AgNPs, routes of AgNPS exposure, physicochemical properties and mechanisms responsible for toxicity, and strategies to establish the safety of AgNPs. The core of this book chapter is the notion that while AgNPs may be effective agents in exterminating various pathogens, they may also damage healthy cells, animals, humans, and ecosystems. Thus, the manufacture and usage of AgNPs should be closely monitored and regulated.

Keywords

Silver nanoparticles Properties Toxicity Dermal exposure Oral exposure Inhalation exposure 

References

  1. 1.
    Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res Int. 2015;22:4122–43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS. Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials (Basel). 2018;8Google Scholar
  3. 3.
    Burdusel AC, Gherasim O, Grumezescu AM, Mogoanta L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials (Basel). 2018;8Google Scholar
  4. 4.
    Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol. 2014;14:4757–80.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116–27.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials. 2010;31:2034–42.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012;24:125–35.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Baroli B. Skin absorption and potential toxicity of nanoparticulate nanomaterials. J Biomed Nanotechnol. 2010;6:485–96.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci. 2010;99:21–50.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Creutzenberg O, Bellmann B, Korolewitz R, Koch W, Mangelsdorf I, Tillmann T, Schaudien D. Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats. Inhal Toxicol. 2012;24:821–30.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Elder A, Oberdorster G. Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med. 2006;5:785–96.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdorster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6:7427–42.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khalili Fard J, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5:447–54.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gualtierotti R, Guarnaccia L, Beretta M, Navone SE, Campanella R, Riboni L, Rampini P, Marfia G. Modulation of neuroinflammation in the central nervous system: role of chemokines and sphingolipids. Adv Ther. 2017;34:396–420.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    van Kesteren PC, Cubadda F, Bouwmeester H, van Eijkeren JC, Dekkers S, de Jong WH, Oomen AG. Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology. 2015;9:442–52.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ivask A, Voelcker NH, Seabrook SA, Hor M, Kirby JK, Fenech M, Davis TP, Ke PC. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol. 2015;28:1023–35.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, Chen T. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol. 2017;91:509–19.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lebedova J, Hedberg YS, Odnevall Wallinder I, Karlsson HL. Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis. 2018;33:77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis. 2015;30:577–91.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tiwari DK, Jin T, Behari J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods. 2011;21:13–24.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20:575–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008;20:567–74.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108:452–61.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, Ryu G, Myung H. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett. 2008;30:1893–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rosas-Hernandez H, Jimenez-Badillo S, Martinez-Cuevas PP, Gracia-Espino E, Terrones H, Terrones M, Hussain SM, Ali SF, Gonzalez C. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett. 2009;191:305–13.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rezvani E, Rafferty A, McGuinness C, Kennedy J. Adverse effects of nanosilver on human health and the environment. Acta Biomater. 2019;Google Scholar
  30. 30.
    Jia J, Li F, Zhou H, Bai Y, Liu S, Jiang Y, Jiang G, Yan B. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environ Sci Technol. 2017;51:9334–43.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hu Q, Bai X, Hu G, Zuo YY. Unveiling the molecular structure of pulmonary surfactant Corona on nanoparticles. ACS Nano. 2017;11:6832–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010;7:2.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Borm PJ, Muller-Schulte D. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond). 2006;1:235–49.CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Kusaka Y, Sato K, Nakakuki K, Kohyama N, Donaldson K. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health A. 1998;53:423–38.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kendall M, Holgate S. Health impact and toxicological effects of nanomaterials in the lung. Respirology. 2012;17:743–58.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2013;10:33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol. 2013;3Google Scholar
  39. 39.
    Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 2001;90:1927–36.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34:J226–33.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shahare B, Yashpal M. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods. 2013;23:161–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch Toxicol. 2010;84:63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7:20.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Frohlich EE, Frohlich E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int J Mol Sci. 2016;17:509.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li J, Tang M, Xue Y. Review of the effects of silver nanoparticle exposure on gut bacteria. J Appl Toxicol. 2019;39:27–37.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett. 2006;161:115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Teow Y, Asharani PV, Hande MP, Valiyaveettil S. Health impact and safety of engineered nanomaterials. Chem Commun (Camb). 2011;47:7025–38.CrossRefGoogle Scholar
  48. 48.
    Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn HG, Erdmann H. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro. 2014;28:1280–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190:156–62.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Korani M, Rezayat SM, Arbabi Bidgoli S. Sub-chronic dermal toxicity of silver nanoparticles in Guinea pig: special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res. 2013;12:511–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Rees P, Wills JW, Brown MR, Barnes CM, Summers HD. The origin of heterogeneous nanoparticle uptake by cells. Nat Commun. 2019;10:2341.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6:5845–57.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.CrossRefGoogle Scholar
  59. 59.
    Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016;99:133–43.CrossRefGoogle Scholar
  60. 60.
    Yu SJ, Yin YG, Liu JF. Silver nanoparticles in the environment. Environ Sci Process Impacts. 2013;15:78–92.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Vazquez-Munoz R, Borrego B, Juarez-Moreno K, Garcia-Garcia M, Mota Morales JD, Bogdanchikova N, Huerta-Saquero A. Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol Lett. 2017;276:11–20.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cho YM, Mizuta Y, Akagi JI, Toyoda T, Sone M, Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol. 2018;31:73–80.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM. Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem. 2015;15:1596–604.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW, Van Eijkeren JC, Geertsma RE, De Jong WH. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials. 2010;31:8350–61.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32:9810–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Thorley AJ, Tetley TD. New perspectives in nanomedicine. Pharmacol Ther. 2013;140:176–85.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Carlson C, Hussain SM, Schrand AM, K. Braydich-Stolle L, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112:13608–19.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nangia S, Sureshkumar R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir. 2012;28:17666–71.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8:36.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Makama S, Kloet SK, Piella J, van den Berg H, de Ruijter NCA, Puntes VF, Rietjens I, van den Brink NW. Effects of systematic variation in size and surface coating of silver nanoparticles on their in vitro toxicity to macrophage RAW 264.7 cells. Toxicol Sci. 2018;162:79–88.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45:283–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:26.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interf Sci. 2014;204:15–34.CrossRefGoogle Scholar
  76. 76.
    Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol. 2007;26:135–41.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Herzog E, Byrne HJ, Davoren M, Casey A, Duschl A, Oostingh GJ. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol. 2009;236:276–81.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–86.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Stevenson LM, Dickson H, Klanjscek T, Keller AA, McCauley E, Nisbet RM. Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds. PLoS One. 2013;8:e74456.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D. Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ. 2017;575:231–46.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environ Sci Technol. 2009;43:8113–8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol. 2010;7:8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B. Characterization of silver release from commercially available functional (nano)textiles. Chemosphere. 2012;89:817–24.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Farkas J, Peter H, Christian P, Gallego Urrea JA, Hassellov M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV. Characterization of the effluent from a nanosilver producing washing machine. Environ Int. 2011;37:1057–62.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li L, Hartmann G, Doblinger M, Schuster M. Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol. 2013;47:7317–23.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Li L, Xu Z, Wimmer A, Tian Q, Wang X. New insights into the stability of silver Sulfide nanoparticles in surface water: dissolution through hypochlorite oxidation. Environ Sci Technol. 2017;51:7920–7.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol. 2015;28:501–9.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Gao J, Sepulveda MS, Klinkhamer C, Wei A, Gao Y, Mahapatra CT. Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos. Chemosphere. 2015;119:948–52.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Orbea A, Gonzalez-Soto N, Lacave JM, Barrio I, Cajaraville MP. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2017;199:59–68.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Krishnaraj C, Harper SL, Yun SI. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). J Hazard Mater. 2016;301:480–91.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43:9473–9.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Yan A, Chen Z. Impacts of silver nanoparticles on plants: a focus on the Phytotoxicity and underlying mechanism. Int J Mol Sci. 2019;20Google Scholar
  93. 93.
    Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Cao W, Xing B. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agric Food Chem. 2018;66:2589–97.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Cvjetko P, Zovko M, Stefanic PP, Biba R, Tkalec M, Domijan AM, Vrcek IV, Letofsky-Papst I, Sikic S, Balen B. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res Int. 2018;25:5590–602.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  1. 1.Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and DynamicsThe University of MontanaMissoulaUSA

Personalised recommendations