Advertisement

Introduction to Nanomedicine in Drug Delivery

  • Tejashri Chavan
  • Pavan Muttil
  • Nitesh K. KundaEmail author
Chapter
  • 26 Downloads
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 41)

Abstract

Recent advances in the field of nanotechnology have given a boost to the academic researchers, the pharmaceutical and biomedical industry, allowing its use in drug delivery and medical diagnosis. Nanotechnology allows the formulation of drug delivery carriers in the nanometer range that helps in overcoming disadvantages associated with conventional drug delivery systems by being small, target-specific, improved drug encapsulation, stable and less toxic at the same time. With nanotechnology, many drugs especially oncogenic molecules that are toxic or are difficult to deliver have been formulated and delivered successfully and are currently in the market, for example, Myocet® (2000) (Doxorubicin) and Marqibo® (2012) (Vincristine). Nanoparticle-based drug delivery carriers can be classified into two types; organic and inorganic. Organic nanoparticles are mostly used for drug delivery, while inorganic nanoparticles are majorly involved in diagnosis. Organic nanoparticles generally involve but are not limited to liposomes, dendrimers, polymeric micelles, polymeric nanoparticles, and solid lipid nanoparticles. Inorganic nanoparticles involve metals such as gold, silver, and iron oxide. In this chapter, we will discuss the advantages and disadvantages of nanoparticles and various materials that are used for making different types of nanoparticles with relevant examples. Further, we will discuss the recent developments in this field with some examples pertaining to each type of nanoparticles.

Keywords

Nanomedicine Drug delivery Mucosal Liposomes Lipids Polymer Metallic Nanoparticles 

References

  1. 1.
    Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C. 2013;33(3):1008–21.  https://doi.org/10.1016/j.msec.2013.01.003.CrossRefGoogle Scholar
  2. 2.
    Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today. 2015;20(6):750–9.  https://doi.org/10.1016/j.drudis.2015.01.006.CrossRefPubMedGoogle Scholar
  3. 3.
    Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of graphene oxide and its biomedical applications. Crit Rev Solid State Mater Sci. 2015;40(5):291–315.  https://doi.org/10.1080/10408436.2014.1002604.CrossRefGoogle Scholar
  4. 4.
    Moritz M, Geszke-Moritz M. Recent Developments in application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med. 2015;24(5):749–58.  https://doi.org/10.17219/acem/31802.CrossRefPubMedGoogle Scholar
  5. 5.
    Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596–613.  https://doi.org/10.1016/j.cej.2013.05.046.CrossRefGoogle Scholar
  6. 6.
    Labieniec-Watala M, Watala C. PAMAM dendrimers: destined for success or doomed to fail? Plain and modified PAMAM dendrimers in the context of biomedical applications. J Pharm Sci. 2015;104(1):2–14.  https://doi.org/10.1002/jps.24222.CrossRefPubMedGoogle Scholar
  7. 7.
    Moritz M, Geszke-Moritz M. Mesoporous materials as multifunctional tools in biosciences: principles and applications. Mater Sci Eng C. 2015;49:114–51.  https://doi.org/10.1016/j.msec.2014.12.079.CrossRefGoogle Scholar
  8. 8.
    Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C. 2016;68:982–94.  https://doi.org/10.1016/j.msec.2016.05.119.CrossRefGoogle Scholar
  9. 9.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR, Corrie SR. Nanoparticle-based medicines : a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.  https://doi.org/10.1007/s11095-016-1958-5.CrossRefPubMedGoogle Scholar
  10. 10.
    Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;(February):10–29. doi: https://doi.org/10.1002/btm2.10003
  11. 11.
    Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014:4357–73.Google Scholar
  12. 12.
    Ling L, Ismail M, Du Y, et al. High drug loading, reversible Disulfide Core-cross-linked multifunctional micelles for triggered release of Camptothecin. Mol Pharm. 2018;15:5479–92.  https://doi.org/10.1021/acs.molpharmaceut.8b00585.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu Z, Chen M, Guo Y, et al. Self-assembly of cationic amphiphilic cellulose-g-poly (p-dioxanone) copolymers. Carbohydr Polym. 2019;204(October 2018):214–22.  https://doi.org/10.1016/j.carbpol.2018.10.020.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15(4):862–71.  https://doi.org/10.1208/s12249-014-0113-z.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today. 2012;7(5):467–80.  https://doi.org/10.1016/j.nantod.2012.08.005.CrossRefGoogle Scholar
  16. 16.
    Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: basic research to clinical practice. Int J Pharm. 2017;532(1):249–68.  https://doi.org/10.1016/j.ijpharm.2017.09.005.CrossRefGoogle Scholar
  17. 17.
    Jin X, Yang Q, Cai N. Preparation of ginsenoside compound-k mixed micelles with improved retention and antitumor efficacy. Int J Nanomedicine. 2018;13:3827–38.  https://doi.org/10.2147/IJN.S167529.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang L-L, He D-D, Wang S-X, Dai Y-H, Ju J-M, Zhao C-L. Preparation and evaluation of curcumin-loaded self-assembled micelles. Drug Dev Ind Pharm. 2018;44(4):563–9.  https://doi.org/10.1080/03639045.2017.1405431.CrossRefPubMedGoogle Scholar
  19. 19.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.CrossRefGoogle Scholar
  20. 20.
    Li Y, Xiao K, Zhu W, Deng W, Lam KS. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev. 2014;66:58–73.  https://doi.org/10.1016/j.addr.2013.09.008.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang H, Tang L, Tu C, et al. Redox-responsive, core-cross-linked micelles capable of on-demand, concurrent drug release and structure disassembly. Biomacromolecules. 2013;14(10):3706–12.  https://doi.org/10.1021/bm401086d.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.CrossRefGoogle Scholar
  23. 23.
    Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–15.  https://doi.org/10.1016/j.addr.2012.09.030.CrossRefGoogle Scholar
  24. 24.
    Liu M, Fréchet JMJ. Designing dendrimers for drug delivery. Pharm Sci Technolo Today. 1999;2(10):393–401.  https://doi.org/10.1016/S1461-5347(99)00203-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Mendes LP, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1–21.  https://doi.org/10.3390/molecules22091401.CrossRefGoogle Scholar
  26. 26.
    Hammer BAG, Müllen K. Expanding the limits of synthetic macromolecular chemistry through Polyphenylene Dendrimers. J Nanoparticle Res. 2018;20(10)  https://doi.org/10.1007/s11051-018-4364-6.
  27. 27.
    Kageyama A, Yanase M, Yuguchi Y. Structural characterization of enzymatically synthesized glucan dendrimers. Carbohydr Polym. 2019;204(September 2018):104–10.  https://doi.org/10.1016/j.carbpol.2018.09.053.CrossRefPubMedGoogle Scholar
  28. 28.
    Kotrchová L, Kostka L, Etrych T. Drug carriers with star polymer structures. Physiol Res. 2018;67(Suppl. 2):S293–303.CrossRefGoogle Scholar
  29. 29.
    Jędrzak A, Grześkowiak BF, Coy E, et al. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surfaces B Biointerfaces. 2019;173(June 2018):698–708.  https://doi.org/10.1016/j.colsurfb.2018.10.045.CrossRefPubMedGoogle Scholar
  30. 30.
    Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6(8):427–36.  https://doi.org/10.1016/S1359-6446(01)01757-3.CrossRefPubMedGoogle Scholar
  31. 31.
    Chang H, Wang H, Shao N, Wang M, Wang X, Cheng Y. Surface-engineered dendrimers with a Diaminododecane core achieve efficient gene transfection and low cytotoxicity. Bioconjug Chem. 2014;25(2):342–50.  https://doi.org/10.1021/bc400496u.CrossRefPubMedGoogle Scholar
  32. 32.
    Watkins DM, Sayed-Sweet Y, Klimash JW, Turro NJ, Tomalia DA. Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer−surfactant assemblies. Langmuir. 1997;13(12):3136–41.  https://doi.org/10.1021/la9620263.CrossRefGoogle Scholar
  33. 33.
    Liu C, Gao H, Zhao Z, et al. Improved tumor targeting and penetrating by dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J Mater Chem B. 2019;7:3724–36.  https://doi.org/10.1039/C9TB00433E.CrossRefGoogle Scholar
  34. 34.
    Wang K, Hu Q, Zhu W, Zhao M, Ping Y, Tang G. Structure-invertible nanoparticles for triggered co-delivery of nucleic acids and hydrophobic drugs for combination cancer therapy. Adv Funct Mater. 2015;25(22):3380–92.  https://doi.org/10.1002/adfm.201403921.CrossRefGoogle Scholar
  35. 35.
    Li Y, Wang H, Wang K, et al. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small. 2017;13(2):1602697.  https://doi.org/10.1002/smll.201602697.CrossRefGoogle Scholar
  36. 36.
    Gu Y, Guo Y, Wang C, et al. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater Sci Eng C. 2017;70:572–85.  https://doi.org/10.1016/j.msec.2016.09.035.CrossRefGoogle Scholar
  37. 37.
    Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials. 2013;34(4):1289–301.  https://doi.org/10.1016/j.biomaterials.2012.10.024.CrossRefPubMedGoogle Scholar
  38. 38.
    Han M, Lv Q, Tang X-J, et al. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J Control Release. 2012;163(2):136–44.  https://doi.org/10.1016/j.jconrel.2012.08.020.CrossRefPubMedGoogle Scholar
  39. 39.
    Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res. 2013;19(22):6193 LP–6204.  https://doi.org/10.1158/1078-0432.CCR-13-1536.CrossRefGoogle Scholar
  40. 40.
    Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids. 2014;177:8–18.  https://doi.org/10.1016/j.chemphyslip.2013.10.011.CrossRefPubMedGoogle Scholar
  41. 41.
    Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci Rep. 2016;6:1–15.  https://doi.org/10.1038/srep25876.CrossRefGoogle Scholar
  42. 42.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.  https://doi.org/10.1038/nrd1632.CrossRefPubMedGoogle Scholar
  43. 43.
    Peng S, Zou L, Liu W, et al. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: preparation, stability and bioavailability as a carrier for curcumin. Carbohydr Polym. 2017;156:322–32.  https://doi.org/10.1016/j.carbpol.2016.09.060.CrossRefPubMedGoogle Scholar
  44. 44.
    Rahman M, Beg S, Anwar F, et al. Liposome-based nanomedicine therapeutics for rheumatoid arthritis. Crit Rev Ther Drug Carrier Syst. 2017;34(4):283–316.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017016067.CrossRefPubMedGoogle Scholar
  45. 45.
    Nunes SS, Luis A, De Barros B. Journla of molecular pharmaceutics & organic process research the use of coating agents to enhance liposomes blood circulation time. J Mol Pharm Org Process Res. 2015;3(1):1–2.  https://doi.org/10.4172/2329-9053.1000e120.CrossRefGoogle Scholar
  46. 46.
    Yang T, Cui F, Choi M, Cho J. Enhanced solubility and stability of PEGylated liposomal paclitaxel : In vitro and in vivo evaluation. Int J Pharm. 2007;338:317–26.  https://doi.org/10.1016/j.ijpharm.2007.02.011.CrossRefPubMedGoogle Scholar
  47. 47.
    Monpara J, Kanthou C, Tozer GM, Vavia PR. Rational design of cholesterol derivative for improved stability of paclitaxel cationic liposomes. Pharm Res. 2018:1–17.Google Scholar
  48. 48.
    Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):1–33.  https://doi.org/10.3390/pharmaceutics9020012.CrossRefGoogle Scholar
  49. 49.
    Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.  https://doi.org/10.1016/j.addr.2003.12.002.CrossRefPubMedGoogle Scholar
  50. 50.
    Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58.  https://doi.org/10.4103/0250-474X.57282.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22.  https://doi.org/10.1016/j.ejpb.2013.08.013.CrossRefPubMedGoogle Scholar
  52. 52.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(SUPPL.):131–155. doi: https://doi.org/10.1016/S0169-409X(02)00118-7
  53. 53.
    Rostami E, Kashanian S, Azandaryani AH. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol Biol Rep. 2014;41(5):3521–7.  https://doi.org/10.1007/s11033-014-3216-4.CrossRefPubMedGoogle Scholar
  54. 54.
    Soares S, Fonte P, Costa A, et al. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm. 2013;456(2):370–81.  https://doi.org/10.1016/j.ijpharm.2013.08.076.CrossRefPubMedGoogle Scholar
  55. 55.
    Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol. 2011;63(3):342–51.  https://doi.org/10.1111/j.2042-7158.2010.01225.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Shi S, Han L, Deng L, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.  https://doi.org/10.1016/j.jconrel.2014.09.005.CrossRefPubMedGoogle Scholar
  57. 57.
    Ying X-Y, Cui D, Yu L, Du Y-Z. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr Polym. 2011;84(4):1357–64.  https://doi.org/10.1016/j.carbpol.2011.01.037.CrossRefGoogle Scholar
  58. 58.
    Kuo Y-C, Chung J-F. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surfaces B Biointerfaces. 2011;83(2):299–306.  https://doi.org/10.1016/j.colsurfb.2010.11.037.CrossRefPubMedGoogle Scholar
  59. 59.
    Kuo Y-C, Liang C-T. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials. 2011;32(12):3340–50.  https://doi.org/10.1016/j.biomaterials.2011.01.048.CrossRefPubMedGoogle Scholar
  60. 60.
    Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine Nanotechnology, Biol Med. 2013;9(1):111–21.  https://doi.org/10.1016/j.nano.2012.03.003.CrossRefGoogle Scholar
  61. 61.
    Eid HM, Elkomy MH, El Menshawe SF, Salem HF. Development, optimization, and In Vitro/In Vivo characterization of enhanced lipid nanoparticles for ocular delivery of Ofloxacin: the influence of pegylation and chitosan coating. AAPS PharmSciTech. 2019;20(183):1–14.  https://doi.org/10.1208/s12249-019-1371-6.CrossRefGoogle Scholar
  62. 62.
    Jain P, Pandey V, Soni V. Surface modified solid lipid nanoparticles for brain cancer treatment. Asian J Pharm. 2019;13(2):119–24.Google Scholar
  63. 63.
    Arana L, Bay L, Sarasola LI, Berasategi M, Ruiz S, Alkorta I. Solid lipid nanoparticles surface modification modulates cell internalization and improves Chemotoxic treatment in an Oral carcinoma cell line. Nano. 2019;9(3):1–17.  https://doi.org/10.3390/nano9030464.CrossRefGoogle Scholar
  64. 64.
    Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.  https://doi.org/10.1016/j.progpolymsci.2011.01.001.CrossRefGoogle Scholar
  65. 65.
    El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–91.  https://doi.org/10.1016/j.ijpharm.2017.06.052.CrossRefPubMedGoogle Scholar
  66. 66.
    Vauthier CCP. Development of nanoparticles made of polysaccharides as novel drug carrier systems. Handb Pharm Control Release Technol. 2000:13–429.Google Scholar
  67. 67.
    Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles : current possibilities and future trends. Eur J Pharm Biopharm. 1995;41(1):2–13.Google Scholar
  68. 68.
    Jeanmonod DJ, Rebecca, Suzuki K, et al. We are IntechOpen, the world ’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1% Control of a Proportional Hydraulic System. Intech open. 2018;2(64)  https://doi.org/10.5772/32009.
  69. 69.
    Ahmed TA, El-Say KM. Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole. Life Sci. 2014;110(1):35–43.  https://doi.org/10.1016/j.lfs.2014.06.019.CrossRefPubMedGoogle Scholar
  70. 70.
    Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, José AM. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16(10):1576–81.  https://doi.org/10.1023/A:1018908705446.CrossRefPubMedGoogle Scholar
  71. 71.
    Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified Gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12(9–10):585–91.  https://doi.org/10.1080/10611860400013451.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Luppi B, Bigucci F, Corace G, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci. 2011;44(4):559–65.  https://doi.org/10.1016/j.ejps.2011.10.002.CrossRefPubMedGoogle Scholar
  73. 73.
    Edlund U, Albertsson A-C. Degradable polymer microspheres for controlled drug delivery BT – degradable aliphatic polyesters. In: Berlin, Heidelberg: Springer Berlin Heidelberg; 2002:67–112. doi: https://doi.org/10.1007/3-540-45734-8_3
  74. 74.
    Musumeci T, Ventura CA, Giannone I, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1):172–9.  https://doi.org/10.1016/j.ijpharm.2006.06.023.CrossRefPubMedGoogle Scholar
  75. 75.
    Zambaux MF, Bonneaux F, Gref R, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release. 1998;50(1):31–40.  https://doi.org/10.1016/S0168-3659(97)00106-5.CrossRefPubMedGoogle Scholar
  76. 76.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.  https://doi.org/10.1016/j.jconrel.2012.01.043.CrossRefPubMedGoogle Scholar
  77. 77.
    Grabrucker AM, Garner CC, Boeckers TM, et al. Development of novel Zn2+ loaded Nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS One. 2011;6(3)  https://doi.org/10.1371/journal.pone.0017851.
  78. 78.
    Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles- A review. Asian J Pharm Clin Res. 2012:16–23. doi:ISSN-0974-2441.Google Scholar
  79. 79.
    Saroja C, Lakshmi P, Bhaskaran S. Recent trends in vaccine delivery systems: a review. Int J Pharm Investig. 2011;1(2):64–74.  https://doi.org/10.4103/2230973X.82384.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res. 1985;19(8):941–55.  https://doi.org/10.1002/jbm.820190806.CrossRefPubMedGoogle Scholar
  81. 81.
    González-Martı́n G, Figueroa C, Merino I, Osuna A. Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: preparation and trypanocidal activity. Eur J Pharm Biopharm 2000;49(2):137–142. doi: https://doi.org/10.1016/S0939-6411(99)00076-4.
  82. 82.
    Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Reports. 2012;64(5):1020–37.  https://doi.org/10.1016/S1734-1140(12)70901-5.CrossRefGoogle Scholar
  83. 83.
    Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.  https://doi.org/10.1039/C2CS15344K.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine Nanotechnology, Biol Med. 2006;2(1):8–21.  https://doi.org/10.1016/j.nano.2005.12.003.CrossRefGoogle Scholar
  85. 85.
    Thickett SC, Gilbert RG. Emulsion polymerization: state of the art in kinetics and mechanisms. Polymer (Guildf). 2007;48(24):6965–91.  https://doi.org/10.1016/j.polymer.2007.09.031.CrossRefGoogle Scholar
  86. 86.
    Bhavsar MD, Amiji MM. Polymeric nano- and microparticle technologies for oral gene delivery. Expert Opin Drug Deliv. 2007;4(3):197–213.  https://doi.org/10.1517/17425247.4.3.197.CrossRefPubMedGoogle Scholar
  87. 87.
    Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MNV. Design of Biodegradable Nanoparticles for Oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res. 2009;26(3):492–501.  https://doi.org/10.1007/s11095-008-9763-4.CrossRefPubMedGoogle Scholar
  88. 88.
    Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.  https://doi.org/10.1016/j.addr.2004.02.014.CrossRefPubMedGoogle Scholar
  89. 89.
    Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified Gelatin nanoparticles for intracellular delivery. Pharm Res. 2002;19(7):1061–7.  https://doi.org/10.1023/A:1016486910719.CrossRefPubMedGoogle Scholar
  90. 90.
    Shah M, Naseer MI, Choi MH, Kim MO, Yoon SC. Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharm. 2010;400(1):165–75.  https://doi.org/10.1016/j.ijpharm.2010.08.008.CrossRefPubMedGoogle Scholar
  91. 91.
    Asua JM. Emulsion polymerization: from fundamental mechanisms to process developments. J Polym Sci Part A Polym Chem. 2004;42(5):1025–41.  https://doi.org/10.1002/pola.11096.CrossRefGoogle Scholar
  92. 92.
    Wang J-W, Kuo Y-M. Preparation and adsorption properties of chitosan–poly(acrylic acid) nanoparticles for the removal of nickel ions. J Appl Polym Sci. 2008;107(4):2333–42.  https://doi.org/10.1002/app.27247.CrossRefGoogle Scholar
  93. 93.
    Lohmeyer JHGM, Tan YY, Challa G. Polymerization of Methacrylic acid in the presence of isotactic poly(methyl methacrylate) as possible template. J Macromol Sci Part A – Chem. 1980;14(6):945–57.  https://doi.org/10.1080/00222338008068122.CrossRefGoogle Scholar
  94. 94.
    Al-Nemrawi KN, Alshraiedeh HN, Zayed LA, Altaani MB. Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis. Pharm. 2018;11(1)  https://doi.org/10.3390/ph11010028.
  95. 95.
    Deacon J, Abdelghany SM, Quinn DJ, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release. 2015;198:55–61.  https://doi.org/10.1016/j.jconrel.2014.11.022.CrossRefPubMedGoogle Scholar
  96. 96.
    Muttil P, Prego C, Garcia-Contreras L, et al. Immunization of Guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J. 2010;12(3):330–7.  https://doi.org/10.1208/s12248-010-9192-2.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Muttil P, Pulliam B, Garcia-Contreras L, et al. Pulmonary immunization of Guinea pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS J. 2010;12(4):699–707.  https://doi.org/10.1208/s12248-010-9229-6.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Khademi F, Yousefi-Avarvand A, Derakhshan M, Abbaspour MR, Sadri K, Tafaghodi M. Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: an experimental design. Iran J Pharm Res IJPR. 2019;18(1):446–58.PubMedGoogle Scholar
  99. 99.
    Kunda NK, Alfagih IM, Dennison SR, et al. Bovine serum albumin adsorbed PGA-CO-PDL nanocarriers for vaccine delivery via dry powder inhalation. Pharm Res. 2015;32(4):1341–53.  https://doi.org/10.1007/s11095-014-1538-5.CrossRefPubMedGoogle Scholar
  100. 100.
    Mohamed A, Kunda NK, Ross K, Hutcheon GA, Saleem IY. Polymeric nanoparticles for the delivery of miRNA to treat chronic obstructive pulmonary disease (COPD). Eur J Pharm Biopharm. 2019;136(July 2018):1–8.  https://doi.org/10.1016/j.ejpb.2019.01.002.CrossRefPubMedGoogle Scholar
  101. 101.
    Alaqad K, Saleh T. Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol. 2016;6(4):1–10.  https://doi.org/10.4172/2161-0525.1000384.CrossRefGoogle Scholar
  102. 102.
    Etame AB, Smith CA, Chan WCW, Rutka JT. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine Nanotechnology, Biol Med. 2011;7(6):992–1000.  https://doi.org/10.1016/j.nano.2011.04.004.CrossRefGoogle Scholar
  103. 103.
    Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol. 2010;100(2):178–86.  https://doi.org/10.1016/j.aquatox.2010.03.001.CrossRefPubMedGoogle Scholar
  104. 104.
    Carabineiro AS. Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Mol. 2017;22(5)  https://doi.org/10.3390/molecules22050857.
  105. 105.
    Versiani AF, Andrade LM, Martins EMN, et al. Gold nanoparticles and their applications in biomedicine. Future Virol. 2016;11(4):293–309.  https://doi.org/10.2217/fvl-2015-0010.CrossRefGoogle Scholar
  106. 106.
    Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–13.  https://doi.org/10.1259/bjr/59448833.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Mandal NPP and TK. Engineered Nanoparticles in Cancer Therapy. Recent Pat Drug Deliv Formul. 2007;1(1):37–51. doi: https://doi.org/10.2174/187221107779814104
  108. 108.
    Qian Y, Qiu M, Wu Q, et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep. 2014;4:7490.  https://doi.org/10.1038/srep07490.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep. 2018;8(1):3815.  https://doi.org/10.1038/s41598-018-22172-5.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38.  https://doi.org/10.1021/nn3057005.CrossRefPubMedGoogle Scholar
  111. 111.
    De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: synthetic routes, In Vitro toxicity and theranostic applications for cancer disease. Nanomater (Basel, Switzerland). 2018;8(5):319.  https://doi.org/10.3390/nano8050319.CrossRefGoogle Scholar
  112. 112.
    Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, OU-Yang Y-S, Chen Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–22.  https://doi.org/10.1007/s00253-009-2159-5.CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.  https://doi.org/10.3390/ijms17091534.CrossRefPubMedCentralGoogle Scholar
  114. 114.
    Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.  https://doi.org/10.1021/jp712087m.CrossRefPubMedGoogle Scholar
  115. 115.
    Gurunathan S, Park JH, Han JW, Kim J-H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine. 2015;10:4203–22.  https://doi.org/10.2147/IJN.S83953.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    He Y, Du Z, Ma S, et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomedicine. 2016;11:1879–87.  https://doi.org/10.2147/IJN.S103695.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016;8(5):3040–8.  https://doi.org/10.1039/C5NR07918G.CrossRefPubMedGoogle Scholar
  118. 118.
    Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA. Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interf Sci. 2014;209:40–8.  https://doi.org/10.1016/j.cis.2013.12.011.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  • Tejashri Chavan
    • 1
  • Pavan Muttil
    • 2
  • Nitesh K. Kunda
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesCollege of Pharmacy and Health Sciences, St. John’s UniversityJamaicaUSA
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations