Density Hypercubes, Higher Order Interference and Hyper-decoherence: A Categorical Approach

  • Stefano GogiosoEmail author
  • Carlo Maria Scandolo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11690)


In this work, we use the recently introduced double-dilation construction by Zwart and Coecke to construct a new categorical probabilistic theory of density hypercubes. By considering multi-slit experiments, we show that the theory displays higher-order interference of order up to fourth. We also show that the theory possesses hyperdecoherence maps, which can be used to recover quantum theory in the Karoubi envelope.


Quantum theory Categorical probabilistic theories Higher-order interference Hyperdecoherence 



SG is supported by a grant on Quantum Causal Structures from the John Templeton Foundation. CMS was supported in the writing of this paper by the Engineering and Physical Sciences Research Council (EPSRC) through the doctoral training grant 1652538 and by the Oxford-Google DeepMind graduate scholarship. CMS is currently supported by the Pacific Institute for the Mathematical Sciences (PIMS) and from a Faculty of Science Grand Challenge award at the University of Calgary. This publication was made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.


  1. 1.
    Barnum, H., Lee, C.M., Scandolo, C.M., Selby, J.H.: Ruling out higher-order interference from purity principles. Entropy 19(6), 253 (2017). Scholar
  2. 2.
    Barnum, H., Müller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. New J. Phys. 16(12), 123029 (2014). Scholar
  3. 3.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010). Scholar
  4. 4.
    Chiribella, G., Scandolo, C.M.: Entanglement as an axiomatic foundation for statistical mechanics. arXiv:1608.04459 [quant-ph] (2016).
  5. 5.
    Chiribella, G., Scandolo, C.M.: Microcanonical thermodynamics in general physical theories. New J. Phys. 19(12), 123043 (2017). Scholar
  6. 6.
    Coecke, B.: Terminality implies no-signalling... and much more than that. New Gener. Comput. 34(1–2), 69–85 (2016). Scholar
  7. 7.
    Coecke, B., Lal, R.: Causal categories: relativistically interacting processes. Found. Phys. 43(4), 458–501 (2013). Scholar
  8. 8.
    Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases. Math. Struct. Comput. Sci. 23(3), 555–567 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum mechanics. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 230–244. Springer, Heidelberg (2010). Scholar
  10. 10.
    Dakić, B., Paterek, T., Brukner, Č.: Density cubes and higher-order interference theories. New J. Phys. 16(2), 023028 (2014). Scholar
  11. 11.
    Gogioso, S., Scandolo, C.M.: Categorical probabilistic theories. In: Coecke, B., Kissinger, A. (eds.) Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3–7 July 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp. 367–385. Open Publishing Association (2018). Scholar
  12. 12.
    Gogioso, S.: Higher-order CPM constructions. Electron. Proc. Theor. Comput. Sci. 270, 145–162 (2019). Scholar
  13. 13.
    Jin, F., et al.: Experimental test of born’s rule by inspecting third-order quantum interference on a single spin in solids. Phys. Rev. A 95, 012107 (2017). Scholar
  14. 14.
    Kauten, T., Keil, R., Kaufmann, T., Pressl, B., Brukner, Č., Weihs, G.: Obtaining tight bounds on higher-order interferences with a 5-path interferometer. New J. Phys. 19(3), 033017 (2017). Scholar
  15. 15.
    Krumm, M., Barnum, H., Barrett, J., Müller, M.P.: Thermodynamics and the structure of quantum theory. New J. Phys. 19(4), 043025 (2017). Scholar
  16. 16.
    Lee, C.M., Selby, J.H.: Deriving Grover’s lower bound from simple physical principles. New J. Phys. 18(9), 093047 (2016). Scholar
  17. 17.
    Lee, C.M., Selby, J.H.: Generalised phase kick-back: the structure of computational algorithms from physical principles. New J. Phys. 18(3), 033023 (2016). Scholar
  18. 18.
    Lee, C.M., Selby, J.H.: Higher-order interference in extensions of quantum theory. Found. Phys. 47(1), 89–112 (2017). Scholar
  19. 19.
    Lee, C.M., Selby, J.H., Barnum, H.: Oracles and query lower bounds in generalised probabilistic theories. arXiv:1704.05043 [quant-ph] (2017).
  20. 20.
    Lee, C.M., Selby, J.H.: A no-go theorem for theories that decohere to quantum mechanics. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 474(2214), 20170732 (2018). Scholar
  21. 21.
    Niestegge, G.: Three-slit experiments and quantum nonlocality. Found. Phys. 43(6), 805–812 (2013). Scholar
  22. 22.
    Park, D.K., Moussa, O., Laflamme, R.: Three path interference using nuclear magnetic resonance: a test of the consistency of Born’s rule. New J. Phys. 14(11), 113025 (2012). Scholar
  23. 23.
    Sinha, A., Vijay, A.H., Sinha, U.: On the superposition principle in interference experiments. Sci. Rep. 5, 10304 (2015). Scholar
  24. 24.
    Sinha, U., Couteau, C., Jennewein, T., Laflamme, R., Weihs, G.: Ruling out multi-order interference in quantum mechanics. Science 329(5990), 418–421 (2010). Scholar
  25. 25.
    Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9(33), 3119–3127 (1994). Scholar
  26. 26.
    Sorkin, R.D.: Quantum Measure Theory and its Interpretation. In: Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability, pp. 229–251. International Press, Boston (1997)Google Scholar
  27. 27.
    Ududec, C.: Perspectives on the formalism of quantum theory. Ph.D. thesis, University of Waterloo (2012)Google Scholar
  28. 28.
    Ududec, C., Barnum, H., Emerson, J.: Three slit experiments and the structure of quantum theory. Found. Phys. 41(3), 396–405 (2011). Scholar
  29. 29.
    Zwart, M., Coecke, B.: Double dilation \(\ne \) double mixing (extended abstract). In: Coecke, B., Kissinger, A. (eds.) Proceedings 14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3–7 July 2017. Electronic Proceedings in Theoretical Computer Science, vol. 266, pp. 133–146. Open Publishing Association (2018). Scholar
  30. 30.
    Życzkowski, K.: Quartic quantum theory: an extension of the standard quantum mechanics. J. Phys. A 41(35), 355302 (2008). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of OxfordOxfordUK
  2. 2.University of CalgaryCalgaryCanada

Personalised recommendations