Natural Teaching of Robot-Assisted Rearranging Exercises for Cognitive Training

  • Antonio AndriellaEmail author
  • Alejandro Suárez-Hernández
  • Javier Segovia-Aguas
  • Carme Torras
  • Guillem Alenyà
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11876)


Social Assistive Robots are a powerful tool to be used in patients’ cognitive training. The purpose of this study is to evaluate a new methodology to enable caregivers to teach cognitive exercises to the robot in an easy and natural way. We build upon our existing framework, in which a robot is employed to provide encouragement and hints while a patient is physically playing a cognitive exercise. In this paper, we focus on empowering the caregiver to easily teach new board exercises to the robot by providing positive examples.

The proposed learning method has two main advantages (i) the teaching procedure is human-friendly (ii) the produced exercise rules are human-understandable. The learning algorithm is validated in 6 exercises with different characteristics, correctly identifying and representing the rules from a few examples.


SAR Robotic assisted exercises Natural teaching 



Authors would like to thank Patrick Grosch, Sergi Hernandez and Alejandro López for assembling and programming the electronic board. Thanks to Nofar Sinai ( for allowing us to use some frames of the SOCRATES video.


  1. 1.
    Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, pp. 367–429, March 2018Google Scholar
  2. 2.
    Abdi, J., et al.: Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open 8(2), 18815 (2018)CrossRefGoogle Scholar
  3. 3.
    Aineto, D., Jiménez, S., Onaindia, E.: Learning STRIPS action models with classical planning. In: ICAPS (2018)Google Scholar
  4. 4.
    Andriella, A., et al.: Deciding the different robot roles for patient cognitive training. Int. J. Hum Comput Stud. 117, 20–29 (2018)CrossRefGoogle Scholar
  5. 5.
    Argall, B.D., et al.: A survey of robot learning from demonstration. Rob. Autonom. Syst. 57(5), 469–483 (2009)CrossRefGoogle Scholar
  6. 6.
    Bahar-Fuchs, A., et al.: Tailored and adaptive computerized cognitive training in older adults at risk for dementia: a randomized controlled trial. J. Alzheimers Dis. 60(3), 889–911 (2017)CrossRefGoogle Scholar
  7. 7.
    Berg-Weger, M., Stewart, D.B.: Non-pharmacologic interventions for persons with dementia. Mo. Med. 114(2), 116–119 (2017)Google Scholar
  8. 8.
    Calinon, S.: Learning from demonstration (programming by demonstration). In: Encyclopedia of Robotics, pp. 1–8 (2018)Google Scholar
  9. 9.
    Cammisuli, D.M., et al.: Non-pharmacological interventions for people with Alzheimer’s disease: a critical review of the scientific literature from the last ten years. Eur. Geriatr. Med. 7(1), 57–64 (2016)CrossRefGoogle Scholar
  10. 10.
    Crick, C., Jay, G., Osentoski, S., Pitzer, B., Jenkins, O.C.: Rosbridge: ROS for Non-ROS users. In: Christensen, H.I., Khatib, O. (eds.) Robotics Research. STAR, vol. 100, pp. 493–504. Springer, Cham (2017). Scholar
  11. 11.
    De Boer, C., et al.: Thinking-while-moving exercises may improve cognition in elderly with mild cognitive deficits: a proof-of-principle study. Dement. Geriatr. Cogn. Disord. Extra 8(2), 248–258 (2018)CrossRefGoogle Scholar
  12. 12.
    Fikes, R., Nilsson, N.: BLACKBOX: a new approach to the application of theorem proving to problem solving. Artif. Intell. J. 2, 189–208 (1971)CrossRefGoogle Scholar
  13. 13.
    Irwin, K., et al.: Healthy aging and dementia: two roads diverging in midlife? (2018)Google Scholar
  14. 14.
    Leo, M., et al.: Computer vision for assistive technologies. Comput. Vis. Image Underst. 154, 1–15 (2017)CrossRefGoogle Scholar
  15. 15.
    Lunenfeld, B., Stratton, P.: The clinical consequences of an ageing world and preventive strategies. Best Pract. Res. Clin. Obstet. Gynaecol. 27(5), 643–659 (2013)CrossRefGoogle Scholar
  16. 16.
    Matarić, M.J., Scassellati, B.: Socially assistive robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1973–1994. Springer, Cham (2016). Scholar
  17. 17.
    Overall, J.E., Schaltenbrand, R.: The SKT neuropsychological test battery. J. Geriatr. Psychiatry Neurol. 5(0891–9887), 220–227 (1992)Google Scholar
  18. 18.
    Pieskä, S., Pieskäa, J., Saukko, O.: Towards easier human-robot interaction to help inexperienced operators in SMEs. In: 3rd IEEE International Conference on CogInfoCom 2012 - Proceedings, pp. 333–338 (2012)Google Scholar
  19. 19.
    Pot, E., et al.: Choregraphe: a graphical tool for humanoid robot programming. In: Proceedings - IEEE International Workshop on RO-MAN, pp. 46–51 (2009)Google Scholar
  20. 20.
    Pu, L., et al.: The effectiveness of social robots for older adults: a systematic review and meta-analysis of randomized controlled studies (2019)Google Scholar
  21. 21.
    Rintanen, J.: Madagascar: scalable planning with SAT. In: Proceedings of the 8th International Planning Competition (2014)Google Scholar
  22. 22.
    Savarimuthu, T.R., et al.: Teaching a robot the semantics of assembly tasks. IEEE Trans. Syst. Man Cybern. Syst., 670–692 (2018)CrossRefGoogle Scholar
  23. 23.
    Tiddi, I., et al.: A user-friendly interface to control ROS robotic platforms. In: CEUR Workshop Proceedings, vol. 2180 (2018)Google Scholar
  24. 24.
    Zubrycki, I., Kolesiński, M., Granosik, G.: Graphical programming interface for enabling non-technical professionals to program robots and internet-of-things devices. Adv. Comput. Intell. 10306, 620–631 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonio Andriella
    • 1
    Email author
  • Alejandro Suárez-Hernández
    • 1
  • Javier Segovia-Aguas
    • 1
  • Carme Torras
    • 1
  • Guillem Alenyà
    • 1
  1. 1.Institut de Robòtica i Informàtica Industrial, CSIC-UPCBarcelonaSpain

Personalised recommendations