Advertisement

Real Processing-In-Memory with Memristive Memory Processing Unit

  • Shahar KvatinskyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11947)

Abstract

Memristive technologies are attractive candidates to replace conventional memory technologies and can also be used to perform logic and arithmetic operations. In this extended abstract, we discuss how memristors are used to combine data storage and computation in the memory, thus enabling a novel non-von Neumann architecture called the ‘memristive memory processing unit’ (mMPU). The mMPU relies on a memristive logic technique called ‘memristor aided logic’ (MAGIC) that requires no modification to the memory array structure. By greatly reducing the data transfer between the CPU and the memory, the mMPU alleviates the primary restriction on performance and energy efficiency in modern computing systems.

Keywords

Memristors RRAM mMPU MAGIC 

References

  1. 1.
    Balasubramonian, R., Grot, B.: Near-data processing. IEEE Micro 36(1), 4–5 (2016)CrossRefGoogle Scholar
  2. 2.
    Kvatinsky, S., et al.: The desired memristor for circuit designers. IEEE Circ. Syst. Mag. 13(2), 17–22 (2013)CrossRefGoogle Scholar
  3. 3.
    Greenberg-Toledo, T., Mazor, R., Haj Ali, A., Kvatinsky, S.: Supporting the momentum algorithm using a memristor-based synapse. IEEE Trans. Circ. Syst. I Regul. Pap. 66(4), 1571–1583 (2019)CrossRefGoogle Scholar
  4. 4.
    Rosenthal, E., Greshnikov, S., Soudry, D., Kvatinsky, S.: A fully analog memristor-based multilayer neural network with online backpropagation training. In: Proceeding of the IEEE International Symposium on Circuits and Systems, pp. 1394–1397, May 2016Google Scholar
  5. 5.
    Abo Hanna, H., Danial, L., Kvatinsky, S., Daniel, R.: Modeling biochemical reactions and gene networks with memristors. In: Proceeding of the IEEE Symposium on Biological Circuits and Systems, pp. 1–4, October 2017Google Scholar
  6. 6.
    Abo Hanna, H., Danial, L., Kvatinsky, S., Daniel, R.: Memristors as artificial biochemical reactions in cytomorphic systems. In: Proceedings of the IEEE International Conference on Science of Electrical Engineering, December 2018Google Scholar
  7. 7.
    Reuben, J., et al.: Memristive logic: a framework for evaluation and comparison. In: Proceeding of the IEEE International Symposium on Power and Timing Modeling, Optimization and Simulation, pp. 1–8, September 2017Google Scholar
  8. 8.
    Kvatinsky, S., et al.: MRL – memristor ratioed logic. In: Proceedings of the International Cellular Nanoscale Networks and their Applications, pp. 1–6, August 2012Google Scholar
  9. 9.
    Kvatinsky, S., et al.: MAGIC - memristor-aided logic. IEEE Trans. Circ. Syst. II Exp. Briefs 61(11), 895–899 (2014)Google Scholar
  10. 10.
    Ben Hur, R., Kvatinsky, S.: Memory processing unit for in-memory processing. In: Proceedings of the IEEE International Symposium on Nanoscale Architectures, pp. 171–172, July 2016Google Scholar
  11. 11.
    Haj Ali, A., et al.: Not in name alone: a memristive memory processing unit for real in-memory processing. IEEE Micro 38(5), 13–21 (2018)CrossRefGoogle Scholar
  12. 12.
    Ben-Hur, R., Kvatinsky, S.: Memristive memory processing unit (MPU) controller for in-memory processing. In: Proceedings of the IEEE International Conference on Science of Electrical Engineering, pp. 1–5, November 2016Google Scholar
  13. 13.
    Talati, N., Ha, H., Perach, B., Ronen, R., Kvatinsky, S.: CONCEPT: a column oriented memory controller for efficient memory and PIM operations in RRAM. IEEE Micro 39(1), 33–43 (2019)CrossRefGoogle Scholar
  14. 14.
    Wald, N., Kvatinsky, S.: Influence of parameter variations and environment for real processing-in-memory using memristor aided logic (MAGIC). Microelectron. J. 86, 22–33 (2019)CrossRefGoogle Scholar
  15. 15.
    Talati, N., et al.: Practical challenges in delivering the promises of real processing-in-memory machines. In: Proceedings of the Design Automation and Test in Europe, pp. 1628–1633, March 2018Google Scholar
  16. 16.
    Haj Ali, A., et al.: Efficient algorithms for in-memory fixed point multiplication using MAGIC. In: Proceeding of the IEEE International Symposium on Circuits and Systems, pp. 1–5, May 2018Google Scholar
  17. 17.
    Haj Ali, A., et al.: IMAGING - in-memory algorithms for image processing. IEEE Trans. Circ. Syst. I Regul. Pap. 65(12), 4258–4271 (2018)CrossRefGoogle Scholar
  18. 18.
    Ben Hur, R., et al.: SIMPLE MAGIC: synthesis and mapping of boolean functions for memristor aided logic (MAGIC). In: Proceeding of the IEEE International Conference on Computer Aided Design, pp. 225–232, November 2017Google Scholar
  19. 19.
    Ben-Hur, R., et al.: SIMPLER MAGIC: synthesis and mapping of in-memory logic executed in a single row to improve throughput. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. (in press)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations