Advertisement

OCD Diagnosis via Smoothing Sparse Network and Stacked Sparse Auto-Encoder Learning

  • Peng Yang
  • Lili Jin
  • Chuangyong Xu
  • Tianfu Wang
  • Baiying LeiEmail author
  • Ziwen PengEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11849)

Abstract

Obsessive-compulsive disorder (OCD) is a serious mental illness that affects the overall quality of patients’ daily life. Since sparse learning can remove redundant information in resting-state functional magnetic resonance imaging (rs-fMRI) data via the brain functional connectivity network (BFCN) and retain good biological characteristics, it is an important method for OCD analysis. However, most existing methods ignore the relationship among subjects. To solve this problem, we propose a smoothing sparse network (SSN) to construct BFCN. Specifically, we add a smoothing term in the model to constrain the relationship and increase the similarity among the subjects. As a kind of deep learning method, the stacked sparse auto-encoder (SSAE) can learn the high level internal features from data and reduce its dimension. For this reason, we design an improved SSAE to learn the high level features of BFCN and reduce the data dimension. We add a \( \ell_{2} \)-norm to prevent overfitting as well. We apply this framework on OCD dataset self-collected from local hospitals. The experimental results show that our method can achieve quite promising performance and outperform the state-of-the-art methods.

Keywords

Obsessive-compulsive disorder Stacked sparse auto-encoder Smoothing sparse network Brain functional connectivity network 

References

  1. 1.
    Zhou, C., Cheng, Y., Ping, L., et al.: Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging. Front. Psychiatry 9, 1–9 (2018).  https://doi.org/10.3389/fpsyt.2018.00524CrossRefGoogle Scholar
  2. 2.
    Sen, B., Bernstein, G.A., Xu, T., et al.: Classification of obsessive-compulsive disorder from resting-state fMRI. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3606–3609. IEEE Press, New York (2016).  https://doi.org/10.1109/embc.2016.7591508
  3. 3.
    Xing, X., Jin, L., Shi, F., et al.: Diagnosis of OCD using functional connectome and Riemann kernel PCA. In: SPIE Medical Imaging. SPIE, Washington DC (2019).  https://doi.org/10.1117/12.2512316
  4. 4.
    Wee, C.Y., Yap, P.T., Zhang, D., et al.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219, 641–656 (2014).  https://doi.org/10.1007/s00429-013-0524-8CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Jiao, L., Li, Y., et al.: Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification. IEEE Trans. Geosci. Remote Sens. 55, 6683–6694 (2017).  https://doi.org/10.1109/TGRS.2017.2727067CrossRefGoogle Scholar
  6. 6.
    Xu, J., Xiang, L., Liu, Q., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35, 119–130 (2016).  https://doi.org/10.1109/TMI.2015.2458702CrossRefGoogle Scholar
  7. 7.
    Wee, C.Y., Yang, S., Yap, P.T., et al.: Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imag. Behav. 10, 342–356 (2016).  https://doi.org/10.1007/s11682-015-9408-2CrossRefGoogle Scholar
  8. 8.
    Chen, X., Zhang, H., Gao, Y., et al.: High-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 37, 3282–3296 (2016).  https://doi.org/10.1002/hbm.23240CrossRefGoogle Scholar
  9. 9.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).  https://doi.org/10.1016/j.neuroimage.2009.10.003CrossRefGoogle Scholar
  10. 10.
    Fan, J., Zhong, M., Zhu, X., et al.: Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder. NeuroImage Clin. 15, 1–7 (2017).  https://doi.org/10.1016/j.nicl.2017.04.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science CenterShenzhen UniversityShenzhenChina
  2. 2.College of Psychology and SociologyShenzhen UniversityShenzhenChina
  3. 3.Department of Child Psychiatry, Shenzhen Kangning HospitalShenzhen University School of MedicineShenzhenChina

Personalised recommendations