Advertisement

Global-Scale Evaluation of 22 Precipitation Datasets Using Gauge Observations and Hydrological Modeling

  • Hylke E. BeckEmail author
  • Noemi Vergopolan
  • Ming Pan
  • Vincenzo Levizzani
  • Albert I. J. M. van Dijk
  • Graham P. Weedon
  • Luca Brocca
  • Florian Pappenberger
  • George J. Huffman
  • Eric F. Wood
Chapter
  • 208 Downloads
Part of the Advances in Global Change Research book series (AGLO, volume 69)

Abstract

We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76,086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the conceptual model HBV against streamflow records for each of 9053 small to medium-sized (<50,000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR) and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1). Our results highlight large differences in estimation accuracy, and hence, the importance of P dataset selection in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging can exploit the complementary strengths of gauge-, satellite- and reanalysis-based P estimates.

Keywords

Precipitation Rainfall Evaluation Validation Raingauges Streamflow Satellite products Reanalysis Radar 

Notes

Acknowledgements

We gratefully acknowledge the P dataset developers for producing and making available their datasets. The Water Center for Arid and Semi-Arid Zones in Latin America and the Caribbean (CAZALAC) and the Centro de Ciencia del Clima y la Resiliencia (CR)2 (FONDAP 15110009) are thanked for sharing the Mexican and Chilean gauge data, respectively. We also acknowledge the gauge data providers in the Latin American Climate Assessment & Dataset (LACA&D) project: IDEAM (Colombia), INAMEH (Venezuela), INAMHI (Ecuador), SENAMHI (Peru), SENAMHI (Bolivia), and DMC (Chile). We further wish to thank Ali Alijanian, Koen Verbist, and Piyush Jain for providing additional gauge data. The Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS) are gratefully acknowledged for providing the majority of the observed Q data. We thank Mauricio Zambrano Bigiarini, Pete Peterson, Hamed Ashouri, Tomoo Ushio, Louise Slater, and three anonymous reviewers for thoughtful comments and suggestions which helped improve the quality of the paper. Graham P. Weedon was supported by the Joint DECC and Defra Integrated Climate Program – DECC/Defra (GA01101). Vincenzo Levizzani wishes to acknowledge funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 603608, “Global Earth Observation for integrated water resource assessment”: eartH2Observe, and from the “Progetto di Interesse NextData” of the Italian Ministry of Education, University, and Research (MIUR). The work was supported through IPA support for the first author from the US Army Corps of Engineers’ International Center for Integrated Water Resources Management (ICIWaRM), under the auspices of UNESCO.

References

  1. Adler, R. F., Kidd, C., Petty, G., Morrissey, M., & Goodman, H. M. (2001). Intercomparison of global precipitation products: The third precipitation intercomparison project (PIP-3). Bulletin of the American Meteorological Society, 82, 1377–1396.  https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.CrossRefGoogle Scholar
  2. AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., & Amitai, E. (2011). Evaluation of satellite-retrieved extreme precipitation rates across the Central United States. Journal of Geophysical Research, 116, D02115.  https://doi.org/10.1029/2010JD014741.CrossRefGoogle Scholar
  3. Akinremi, O. O., McGinn, S. M., & Cutforth, H. W. (1999). Precipitation trends on the Canadian prairies. Journal of Climate, 12, 2996–3003.  https://doi.org/10.1175/1520-0442(1999)012<2996:PTOTCP>2.0.CO;2.CrossRefGoogle Scholar
  4. Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P., Muñoz Sabater, J. M., Isaksen, L., de Jeu, R. A. M., & Wagner, W. (2013). Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. Journal of Hydrometeorology, 14, 1259–1277.  https://doi.org/10.1175/JHM-D-12-0161.1.CrossRefGoogle Scholar
  5. Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., & Dehghani, M. (2017). Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology, 37, 4896–4914.  https://doi.org/10.1002/joc.5131.CrossRefGoogle Scholar
  6. Andréassian, V., Lerat, J., Loumagne, C., Mathevet, T., Michel, C., Oudin, L., & Perrin, C. (2007). What is really undermining hydrologic science today? Hydrological Procedure, 21, 2819–2822.  https://doi.org/10.1002/hyp.6854.CrossRefGoogle Scholar
  7. Arakawa, A. (2004). The cumulus parameterization problem: Past, present, and future. Journal of Climate, 17, 2493–2525.  https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.CrossRefGoogle Scholar
  8. Ashlock, D. (2010). Evolutionary computation for modeling and optimization. New York: Springer. 471 pp, ISBN: 978-0-387-31909-4.Google Scholar
  9. Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & Pratt, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96, 69–83.  https://doi.org/10.1175/BAMS-D-13-00068.1.CrossRefGoogle Scholar
  10. Ashouri, H., Nguyen, P., Thorstensen, A., Hsu, K., Sorooshian, S., & Braithwaite, D. (2016). Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. Journal of Hydrometeorology, 17, 2061–2076.  https://doi.org/10.1175/JHM-D-15-0192.1.CrossRefGoogle Scholar
  11. Barrett, E. C., Adler, R. F., Arpe, K., Bauer, P., Berg, W., Chang, A., Ferraro, R., Ferriday, J., Goodman, S., Hong, Y., Janowiak, J., Kidd, C., Kniveton, D., Morrissey, M., Olson, W., Petty, G., Rudolf, B., Shibata, A., Smith, E. A., & Spencer, R. (1994). The first WetNet precipitation intercomparison project (PIP-1): Interpretation of results. Remote Sensing Reviews, 11, 303–373.  https://doi.org/10.1080/02757259409532268.CrossRefGoogle Scholar
  12. Beck, H. E. (2017). MSWEP Version 2 documentation, Tech. Rep., Princeton University, www.gloh2o.org. Last accessed 6 Mar 2020.
  13. Beck, H. E., van Dijk, A. I. J. M., & de Roo, A. (2015). Global maps of streamflow characteristics based on observations from several thousand catchments. Journal of Hydrometeorology, 16, 1478–1501.  https://doi.org/10.1175/JHM-D-14-0155.1.CrossRefGoogle Scholar
  14. Beck, H. E., Bruijnzeel, L. A., van Dijk, A. I. J. M., McVicar, T. R., Scatena, F. N., & Schellekens, J. (2013). The impact of forest regeneration on streamflow in 12 mesoscale humid tropical catchments. Hydrology and Earth System Sciences, 17, 2613–2635.  https://doi.org/10.5194/hess-17-2613-2013.CrossRefGoogle Scholar
  15. Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52, 3599–3622.  https://doi.org/10.1002/2015WR018247.CrossRefGoogle Scholar
  16. Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., & de Roo, A. (2017a). MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences, 21, 589–615.  https://doi.org/10.5194/hess-21-589-2017.CrossRefGoogle Scholar
  17. Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., & Schellekens, J. (2017b). Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth System Sciences, 21, 2881–2903.  https://doi.org/10.5194/hess-21-2881-2017.CrossRefGoogle Scholar
  18. Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., & Wood, E. F. (2017c). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21, 6201–6217.  https://doi.org/10.5194/hess-21-6201-2017.CrossRefGoogle Scholar
  19. Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. M., van Dijk, A. I. J. M., McVicar, T. R., & Adler, R. F. (2019a). MSWEP 2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bulletin of the American Meteorological Society, 100, 473–500.  https://doi.org/10.1175/BAMS-D-17-0138.1.CrossRefGoogle Scholar
  20. Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., & Wood, E. F. (2019b). Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrology and Earth System Sciences, 23, 207–224. https://doi.org/10.5194/hess-23-207-2019.
  21. Behrangi, A., Khakbaz, B., Jaw, T. C., AghaKouchak, A., Hsu, K.-L., & Sorooshian, S. (2011). Hydrologic evaluation of satellite precipitation products over a mid-size basin. Journal of Hydrology, 397, 225–237.  https://doi.org/10.1016/j.jhydrol.2010.11.043.CrossRefGoogle Scholar
  22. Bengtsson, L., Hagemann, S., & Hodges, K. I. (2004). Can climate trends be calculated from reanalysis data? Journal of Geophysical Research, 109, D11111.  https://doi.org/10.1029/2004JD004536.CrossRefGoogle Scholar
  23. Bergström, S. (1992). The HBV model – Its structure and applications. SMHI Reports RH 4, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden. Available at https: //www.smhi.se/en/publications/the-hbv-model-its-structure-and-applications-1.83591. Last accessed 8 Nov 2018.
  24. Bitew, M. M., Gebremichael, M., Ghebremichael, L. T., & Bayissa, Y. A. (2012). Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. Journal of Hydrometeorology, 13, 338–350.  https://doi.org/10.1175/2011JHM1292.1.CrossRefGoogle Scholar
  25. Bock, A. R., Hay, L. E., McCabe, G. J., Markstrom, S. L., & Atkinson, R. D. (2016). Parameter regionalization of a monthly water balance model for the conterminous United States. Hydrology and Earth System Sciences, 20, 2861–2876.  https://doi.org/10.5194/hess-20-2861-2016.CrossRefGoogle Scholar
  26. Bosilovich, M. G., Chen, J., Robertson, F. R., & Adler, R. F. (2008). Evaluation of global precipitation in reanalyses. Journal of Applied Meteorology and Climatology, 47, 2279–2299.  https://doi.org/10.1175/2008JAMC1921.1.CrossRefGoogle Scholar
  27. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., & Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall satellite soil moisture data. Journal of Geophysical Research, 119, 5128–5141.  https://doi.org/10.1002/2014JD021489.CrossRefGoogle Scholar
  28. Buarque, D. C., de Paiva, R. C. D., Clarke, R. T., & Mendes, C. A. B. (2011). A comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network. Journal of Geophysical Research, 116, D19105.  https://doi.org/10.1029/2011JD016060.CrossRefGoogle Scholar
  29. Bumke, K., König-Langlo, G., Kinzel, J., & Schröder, M. (2016). HOAPS and ERA-interim precipitation over the sea: Validation against shipboard in situ measurements. Atmospheric Measurement Techniques, 9, 2409–2423.  https://doi.org/10.5194/amt-9-2409-2016.CrossRefGoogle Scholar
  30. Cattani, E., Merino, A., & Levizzani, V. (2016). Evaluation of monthly satellite-derived precipitation products over East Africa. Journal of Hydrometeorology, 17, 2555–2573.  https://doi.org/10.1175/JHM-D-0042.1.CrossRefGoogle Scholar
  31. Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 135, 404–414.  https://doi.org/10.1016/j.atmosres.2012.06.028.CrossRefGoogle Scholar
  32. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247–1250.  https://doi.org/10.5194/gmd-7-1247-2014.CrossRefGoogle Scholar
  33. Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., & Janowiak, J. E. (2008). Assessing objective techniques for gauge-based analyses of global daily precipitation. Journal of Geophysical Research, 113, D04110.  https://doi.org/10.1029/2007JD009132.CrossRefGoogle Scholar
  34. Chen, S., Hong, Y., Gourley, J. J., Huffman, G. J., Tian, Y., Cao, Q., Yong, B., Kirstetter, P.-E., Hu, J., Hardy, J., Li, Z., Khan, S. I., & Xue, X. (2013). Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the continental United States. Water Resources Research, 49, 8174–8186.  https://doi.org/10.1002/2012WR012795.CrossRefGoogle Scholar
  35. Ciabatta, L., Massari, C., Brocca, L., Gruber, A., Reimer, C., Hahn, S., Paulik, C., Dorigo, W., Kidd, R., & Wagner, W. (2017). SM2RAIN-CCI: A new global long-term rainfall data set derived from ESA CCI soil moisture. Earth System Science Data, 10, 267–280.  https://doi.org/10.5194/essd-10-267-2018.CrossRefGoogle Scholar
  36. Clark, P., Roberts, N., Lean, H., Ballard, S. P., & Charlton-Perez, C. (2016). Convection-permitting models: A step-change in rainfall forecasting. Meteorological Applications, 23, 165–181.  https://doi.org/10.1002/met.1538.CrossRefGoogle Scholar
  37. Collischonn, B., Collischonn, W., & Tucci, C. E. M. (2008). Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360, 207–216.  https://doi.org/10.1016/j.jhydrol.2008.07.032.CrossRefGoogle Scholar
  38. Criss, R. E., & Winston, W. E. (2008). Do Nash values have value? Discussion and alternate proposals. Hydrological Procedure, 22, 2723–2725.  https://doi.org/10.1002/hyp.7072.CrossRefGoogle Scholar
  39. Crow, W. T., van den Berg, M. J., Huffman, G. J., & Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: The soil moisture analysis rainfall tool (SMART). Water Resources Research, 47, W08521.  https://doi.org/10.1029/2011WR010576.CrossRefGoogle Scholar
  40. Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., & Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28, 2031–2064.  https://doi.org/10.1002/joc.1688.CrossRefGoogle Scholar
  41. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  42. Deelstra, J., Farkas, C., Engebretsen, A., Kværnø, S., Beldring, S., Olszewska, A., & Nesheim, L. (2010). Can we simulate runoff from agriculture dominated watersheds? Comparison of the DrainMod, SWAT, HBV, COUP and INCA models applied for the Skuterud catchment. Bioforsk FOKUS, 5, 119–128.Google Scholar
  43. Di Giuseppe, F., Molteni, F., & Dutra, E. (2013). Real-time correction of ERA-interim monthly rainfall. Geophysical Research Letters, 40, 3750–3755.  https://doi.org/10.1002/grl.50670.CrossRefGoogle Scholar
  44. Dinku, T., Ceccato, P., & Connor, S. J. (2016). Challenges of satellite rainfall estimation over mountainous and arid parts of East Africa. International Journal of Remote Sensing, 32, 5965–5979.  https://doi.org/10.1080/01431161.2010.499381.CrossRefGoogle Scholar
  45. Driouech, F., Déqué, M., & Mokssit, A. (2009). Numerical simulation of the probability distribution function of precipitation over Morocco. Climate Dynamics, 32, 1055–1063.  https://doi.org/10.1007/s00382-008-0430-6.CrossRefGoogle Scholar
  46. Ebert, E. E. (2007). Methods for verifying satellite precipitation estimates. In Measuring Precipitation from Space, V. Levizzani, P. Bauer, & F. J. Turk (Eds.), Advances Global Change Research (Vol. 28, pp. 345–356). Dordrecht: Springer. ISBN: 978-1-4020-5835-6.Google Scholar
  47. Ebert, E. E., Janowiak, J. E., & Kidd, C. (2007). Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88, 47–64.  https://doi.org/10.1175/BAMS-88-1-47.CrossRefGoogle Scholar
  48. Essou, G. R. C., Arsenault, R., & Brissette, F. P. (2016). Comparison of climate datasets for lumped hydrological modeling over the continental United States. Journal of Hydrology, 537, 334–345.  https://doi.org/10.1016/j.jhydrol.2016.03.063.CrossRefGoogle Scholar
  49. Falck, A. S., Maggioni, V., Tomasella, J., Vila, D. A., & Diniz, F. L. R. (2015). Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins-Araguaia basin in Brazil. Journal of Hydrology, 527, 943–957.  https://doi.org/10.1016/j.jhydrol.2015.05.042.CrossRefGoogle Scholar
  50. Falcone, J. A., Carlisle, D. M., Wolock, D. M., & Meador, M. R. (2010). GAGES: A stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology, 91, 621.  https://doi.org/10.1890/09-0889.1.CrossRefGoogle Scholar
  51. Fekete, B. M., Vörösmarty, C. J., Roads, J. O., & Willmott, C. J. (2004). Uncertainties in precipitation and their impacts on runoff estimates. Journal of Climate, 17, 294–304.  https://doi.org/10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2.CrossRefGoogle Scholar
  52. Ferraro, R. R., Smith, E. A., Berg, W., & Huffman, G. J. (1998). A screening methodology for passive microwave precipitation retrieval algorithms. Journal of the Atmospheric Sciences, 55, 1583–1600.  https://doi.org/10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.CrossRefGoogle Scholar
  53. Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.  https://doi.org/10.1002/joc.5086.CrossRefGoogle Scholar
  54. Fortin, F., De Rainville, F., Gardner, M., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13, 2171–2175.Google Scholar
  55. Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., & Husak, G. (2015a). A global satellite-assisted precipitation climatology. Earth System Science Data, 7, 275–287.  https://doi.org/10.5194/essd-7-275-2015.CrossRefGoogle Scholar
  56. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015b). The climate hazards infrared precipitation with stations – A new environment record for monitoring extremes. Scientific Data, 2, 150066.  https://doi.org/10.1038/sdata.2015.66.CrossRefGoogle Scholar
  57. Garrison, G. H., Glenn, C. R., & McMurtry, G. M. (2003). Measurement of submarine groundwater discharge in Kahana Bay, Oahu, Hawaii. Limnology and Oceanography, 48, 920–928.  https://doi.org/10.4319/lo.2003.48.2.0920.CrossRefGoogle Scholar
  58. Gebremichael, M. (2010). Framework for satellite rainfall product evaluation. In F. Y. Testik & M. Gebremichael (Eds.), Rainfall: State of the science (Geophys. Monogr. Series) (Vol. 191, pp. 265–275). Washington, DC: American Geophysical Union.  https://doi.org/10.1029/2010GM000974.CrossRefGoogle Scholar
  59. Gehne, M., Hamill, T. M., Kiladis, G. N., & Trenberth, K. E. (2016). Comparison of global precipitation estimates across a range of temporal and spatial scales. Journal of Climate, 29, 7773–7795.  https://doi.org/10.1175/JCLI-D-15-0618.1.CrossRefGoogle Scholar
  60. Groisman, P. Y., & Legates, D. R. (1994). The accuracy of United States precipitation data. Bulletin of the American Meteorological Society, 72, 215–227.  https://doi.org/10.1175/1520-0477(1994)075<0215:TAOUSP>2.0.CO;2.CrossRefGoogle Scholar
  61. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377, 80–91.  https://doi.org/10.1016/j.jhydrol.2009.08.003.CrossRefGoogle Scholar
  62. Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., & Andréassian, V. (2014). Large-sample hydrology: A need to balance depth with breadth. Hydrology and Earth System Sciences, 18, 463–477.  https://doi.org/10.5194/hess-18-463-2014.CrossRefGoogle Scholar
  63. Haiden, T., Rodwell, M. J., Richardson, D. S., Okagaki, A., Robinson, T., & Hewson, T. (2012). Intercomparison of global model precipitation forecast skill in 2010/11 using the SEEPS score. Monthly Weather Review, 140, 2720–2733.  https://doi.org/10.1175/MWR-D-11-00301.1.CrossRefGoogle Scholar
  64. Hayes, M. J., Svoboda, M. D., Wilhite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 80, 429–438.  https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2.CrossRefGoogle Scholar
  65. Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113, D20119.  https://doi.org/10.1029/2008JD010201.CrossRefGoogle Scholar
  66. Herold, N., Alexander, L. V., Donat, M. G., Contractor, S., & Becker, A. (2015). How much does it rain over land? Geophysical Research Letters, 43, 341–348.  https://doi.org/10.1002/2015GL066615.CrossRefGoogle Scholar
  67. Hirpa, F. A., Gebremichael, M., & Hopson, T. (2010). Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. Journal of Applied Meteorology and Climatology, 49, 1044–1051.  https://doi.org/10.1175/2009JAMC2298.1.CrossRefGoogle Scholar
  68. Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43, 1834–1853.  https://doi.org/10.1175/JAM2173.1.CrossRefGoogle Scholar
  69. Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., & Susskind, J. (2001). Global precipitation at one-degree daily resolution from multi-satellite observations. Journal of Hydrometeorology, 2, 36–50.  https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.CrossRefGoogle Scholar
  70. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.  https://doi.org/10.1175/JHM560.1.CrossRefGoogle Scholar
  71. Islam, T., Rico-Ramirez, M. A., Han, D., Srivastava, P. K., & Ishak, A. M. (2012). Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. Journal of Atmospheric and Solar – Terrestrial Physics, 77, 194–208.  https://doi.org/10.1016/j.jastp.2012.01.001.CrossRefGoogle Scholar
  72. Jain, S. K., & Sudheer, K. P. (2008). Fitting of hydrologic models: A close look at the Nash–Sutcliffe index. Journal of Hydrologic Engineering, 13, 981–986.  https://doi.org/10.1061/(ASCE)1084-0699(2008)13:10(981).CrossRefGoogle Scholar
  73. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xi, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.  https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.CrossRefGoogle Scholar
  74. Kang, S., & Ahn, J.-B. (2015). Global energy and water balances in the latest reanalyses. Asia-Pacific Journal of Atmospheric Sciences, 51, 293–302.  https://doi.org/10.1007/s13143-015-0079-0.CrossRefGoogle Scholar
  75. Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17, 2845–2857.  https://doi.org/10.5194/hess-17-2845-2013.CrossRefGoogle Scholar
  76. Kidd, C., & Levizzani, V. (2011). Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15, 1109–1116.  https://doi.org/10.5194/hess-15-1109-2011.CrossRefGoogle Scholar
  77. Kidd, C., Dawkins, E., & Huffman, G. J. (2013). Comparison of precipitation derived from the ECMWF operational forecast model and satellite precipitation datasets. Journal of Hydrometeorology, 14, 1463–1482.  https://doi.org/10.1175/JHM-D-12-0182.1.CrossRefGoogle Scholar
  78. Kidd, C., Bauer, P., Turk, F. J., Huffman, G. J., Joyce, R., Hsu, K.-L., & Braithwaite, D. (2012). Intercomparison of high-resolution precipitation products over Northwest Europe. Journal of Hydrometeorology, 13, 67–83.  https://doi.org/10.1175/JHM-D-11-042.1.CrossRefGoogle Scholar
  79. Kim, K., Park, J., Baik, J., & Choi, M. (2017). Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over far-East Asia. Atmospheric Research, 187, 95–105.  https://doi.org/10.1016/j.atmosres.2016.12.007.CrossRefGoogle Scholar
  80. Knapp, K. R., Ansari, S., Bain, C. L., Bourassa, M. A., Dickinson, M. J., Funk, C., Helms, C. N., Hennon, C. C., Holmes, C. D., Huffman, G. J., Kossin, J. P., Lee, H.-T., Loew, A., & Magnusdottir, G. (2011). Globally gridded satellite observations for climate studies. Bulletin of the American Meteorological Society, 92, 893–907.  https://doi.org/10.1175/2011BAMS3039.1.CrossRefGoogle Scholar
  81. Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., & Takahashi, K. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan, 93, 5–48.  https://doi.org/10.2151/jmsj.2015-001.CrossRefGoogle Scholar
  82. Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97.  https://doi.org/10.5194/adgeo-5-89-2005.CrossRefGoogle Scholar
  83. Laviola, S., Levizzani, V., Cattani, E., & Kidd, C. (2013). The 183-WSL fast rainrate retrieval algorithm. Part II: Validation using ground radar measurements. Atmospheric Research, 134, 77–86.  https://doi.org/10.1016/j.atmosres.2013.07.013.CrossRefGoogle Scholar
  84. Li, L., Ngongondo, C. S., Xu, C.-Y., & Gong, L. (2013). Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in southern Africa. Hydrology Research, 44, 770–788.  https://doi.org/10.2166/nh.2012.175.CrossRefGoogle Scholar
  85. Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X., Donner, R. V., Ghent, D., Gruber, A., Kaminski, T., Kinzel, J., Klepp, C., Lambert, J.-C., Schaepman-Strub, H., & Schröder, M. (2017). Validation practices for satellite based earth observation data across communities. Reviews of Geophysics, 55, 779–817.  https://doi.org/10.1002/2017RG000562.CrossRefGoogle Scholar
  86. Lopez, P. (2007). Cloud and precipitation parameterizations in modeling and variational data assimilation: A review. Journal of the Atmospheric Sciences, 64, 3766–3784.  https://doi.org/10.1175/2006JAS2030.1.CrossRefGoogle Scholar
  87. Lorenz, C., & Kunstmann, H. (2012). The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. Journal of Hydrometeorology, 13, 1397–1420.  https://doi.org/10.1175/JHM-D-11-088.1.CrossRefGoogle Scholar
  88. Maggioni, V., Meyers, P. C., & Robinson, M. D. (2016). A review of merged high resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM)-era. Journal of Hydrometeorology, 17, 1101–1117.  https://doi.org/10.1175/JHM-D-15-0190.1.CrossRefGoogle Scholar
  89. Maraun, D. (2013). Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. Journal of Climate, 26, 2137–2143.  https://doi.org/10.1175/JCLI-D-12-00821.1.CrossRefGoogle Scholar
  90. Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., & Verhoest, N. E. C. (2017). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903–1925.  https://doi.org/10.5194/gmd-10-1903-2017.CrossRefGoogle Scholar
  91. Massari, C., Crow, W., & Brocca, L. (2017). An assessment of the performance of global rainfall estimates without ground-based observations. Hydrology and Earth System Sciences, 21, 4347–4361.  https://doi.org/10.5194/hess-21-4347-2017.CrossRefGoogle Scholar
  92. Mei, Y., Anagnostou, E. N., Nikolopoulos, E. I., & Borga, M. (2014). Error analysis of satellite precipitation products in mountainous basins. Journal of Hydrometeorology, 15, 1778–1793.  https://doi.org/10.1175/JHM-D-13-0194.1.CrossRefGoogle Scholar
  93. Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29, 897–910.  https://doi.org/10.1175/JTECH-D-11-00103.1.CrossRefGoogle Scholar
  94. Michaelides, S., Levizzani, V., Anagnostou, E. N., Bauer, P., Kasparis, T., & Lane, J. E. (2009). Precipitation: Measurement, remote sensing, climatology and modeling. Atmospheric Research, 94, 512–533.  https://doi.org/10.1016/j.atmosres.2009.08.017.CrossRefGoogle Scholar
  95. Moazami, S., Golian, S., Kavianpour, M. R., & Hong, Y. (2013). Comparison of PERSIANN and V7 TRMM multi-satellite precipitation analysis (TMPA) products with rain gauge data over Iran. International Journal of Remote Sensing, 34, 8156–8171.  https://doi.org/10.1080/01431161.2013.833360.CrossRefGoogle Scholar
  96. Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.  https://doi.org/10.13031/2013.23153.CrossRefGoogle Scholar
  97. Nair, A. S., & Indu, J. (2017). Performance assessment of Multi-Source Weighted-Ensemble Precipitation (MSWEP) product over India. Climate, 5, 2.  https://doi.org/10.3390/cli5010002.CrossRefGoogle Scholar
  98. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I – A discussion of principles. Journal of Hydrology, 10, 282–290.  https://doi.org/10.1016/0022-1694(70)90255-6.CrossRefGoogle Scholar
  99. Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., & Duan, Q. (2015). Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrology and Earth System Sciences, 19, 209–223.  https://doi.org/10.5194/hess-19-209-2015.CrossRefGoogle Scholar
  100. Pan, M., Li, H., & Wood, E. F. (2010). Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resources Research, 46, W09535.  https://doi.org/10.1029/2009WR008290.CrossRefGoogle Scholar
  101. Peel, M. C., Chiew, F. H. S., Western, A. W., & McMahon, T. A. (2000). Extension of unimpaired monthly streamflow data and regionalisation of parameter values to estimate streamflow in ungauged catchments. Report prepared for the Australian National Land and Water Resources Audit, Centre for Environmental Applied Hydrology, University of Melbourne, Australia.Google Scholar
  102. Peña Arancibia, J. L., van Dijk, A. I. J. M., Renzullo, L. J., & Mulligan, M. (2013). Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and south and East Asia. Journal of Hydrometeorology, 14, 1323–1333.  https://doi.org/10.1175/JHM-D-12-0132.1.CrossRefGoogle Scholar
  103. Pilgrim, D. H., Chapman, T. G., & Doran, D. G. (1988). Problems of rainfall-runoff modelling in arid and semiarid regions. Hydrological Sciences Journal, 33, 379–400.  https://doi.org/10.1080/02626668809491261.CrossRefGoogle Scholar
  104. Plesca, I., Timbe, E., Exbrayat, J. F., Windhorst, D., Kraft, P., Crespo, P., Vachéa, K. B., Frede, H. G., & Breuer, L. (2012). Model intercomparison to explore catchment functioning: Results from a remote montane tropical rainforest. Ecological Modelling, 239, 3–13.  https://doi.org/10.1016/j.ecolmodel.2011.05.005.CrossRefGoogle Scholar
  105. Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., & Leung, R. (2015). A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 53, 323–361.  https://doi.org/10.1002/2014RG000475.CrossRefGoogle Scholar
  106. Rasmussen, R. M., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., & Gutmann, E. (2012). How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bulletin of the American Meteorological Society, 93, 811–829.  https://doi.org/10.1175/BAMS-D-11-00052.1.CrossRefGoogle Scholar
  107. Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., & Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.  https://doi.org/10.1175/2010BAMS3001.1.CrossRefGoogle Scholar
  108. Schaefli, B., & Gupta, H. V. (2007). Do Nash values have value? Hydrological Procedure, 21, 2075–2080.  https://doi.org/10.1002/hyp.6825.CrossRefGoogle Scholar
  109. Scheel, M. L. M., Rohrer, M., Huggel, C., Santos Villar, D., Silvestre, E., & Huffman, G. J. (2011). Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrology and Earth System Sciences, 15, 2649–2663.  https://doi.org/10.5194/hess-15-2649-2011.CrossRefGoogle Scholar
  110. Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014). GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115, 15–40.  https://doi.org/10.1007/s00704-013-0860-x.CrossRefGoogle Scholar
  111. Seibert, J., & Vis, M. J. P. (2012). Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrology and Earth System Sciences, 16, 3315–3325.  https://doi.org/10.5194/hess-16-3315-2012.CrossRefGoogle Scholar
  112. Skok, G., Žagar, N., Honzak, L., Žabkar, R., Rakovec, J., & Ceglar, A. (2015). Precipitation intercomparison of a set of satellite- and raingauge-derived datasets, ERA interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic. Theoretical and Applied Climatology, 123, 217–232.  https://doi.org/10.1007/s00704-014-1350-5.CrossRefGoogle Scholar
  113. Sorooshian, S., Hsu, K.-L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046.  https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.CrossRefGoogle Scholar
  114. Stephens, G. L., & Kummerow, C. D. (2007). The remote sensing of clouds and precipitation from space: A review. Journal of the Atmospheric Sciences, 64, 3742–3765.  https://doi.org/10.1175/2006JAS2375.1.CrossRefGoogle Scholar
  115. Stillman, S., Zeng, X., & Bosilovich, M. G. (2016). Evaluation of 22 precipitation and 23 soil moisture products over a semiarid area in southeastern Arizona. Journal of Hydrometeorology, 17, 211–230.  https://doi.org/10.1175/JHM-D-15-0007.1.CrossRefGoogle Scholar
  116. Su, F., Hong, Y., & Lettenmaier, D. P. (2008). Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology, 9, 622–640.  https://doi.org/10.1175/2007JHM944.1.CrossRefGoogle Scholar
  117. Sun, Y., Solomon, S., Dai, A., & Portmann, R. W. (2006). How often does it rain? Journal of Climate, 19, 916–934.  https://doi.org/10.1175/JCLI3672.1.CrossRefGoogle Scholar
  118. Sylla, M. B., Giorgi, F., Coppola, E., & Mariotti, L. (2013). Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. International Journal of Climatology, 33, 1805–1817.  https://doi.org/10.1002/joc.3551.CrossRefGoogle Scholar
  119. Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., & Hong, Y. (2016). Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7? Journal of Hydrometeorology, 17, 121–137.  https://doi.org/10.1175/JHM-D-15-0059.1.CrossRefGoogle Scholar
  120. Tapiador, F. J., Turk, F. J., Petersen, W. A., Hou, A. Y., García-Ortega, E., Machado, L. A. T., Angelis, C. F., Salio, P., Kidd, C., Huffman, G. J., & de Castro, M. (2012). Global precipitation measurement: Methods, datasets and applications. Atmospheric Research, 104–105, 70–97.  https://doi.org/10.1016/j.atmosres.2011.10.021.CrossRefGoogle Scholar
  121. te Linde, A. H., Aerts, J. C. J. H., Hurkmans, R. T. W. L., & Eberle, M. (2008). Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets. Hydrology and Earth System Sciences, 12, 943–957.  https://doi.org/10.5194/hess-12-943-2008.CrossRefGoogle Scholar
  122. Tian, Y., & Peters-Lidard, C. D. (2010). A global map of uncertainties in satellite-based precipitation measurements. Geophysical Research Letters, 37, L24407.  https://doi.org/10.1029/2010GL046008.CrossRefGoogle Scholar
  123. Ushio, T., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., Inoue, T., Takahashi, N., Iguchi, T., Kachi, M., Oki, R., Morimoto, T., & Kawasaki, Z. (2009). A Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of the Meteorological Society of Japan, 87A, 137–151.  https://doi.org/10.2151/jmsj.87A.137.CrossRefGoogle Scholar
  124. Valéry, A., Andréassian, V., & Perrin, C. (2014). “As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 1 – Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology, 517, 1166–1175.  https://doi.org/10.1016/j.jhydrol.2014.04.059.CrossRefGoogle Scholar
  125. Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., & Hattermann, F. (2015). Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth System Dynamics, 6, 17–43.  https://doi.org/10.5194/esd-6-17-2015.CrossRefGoogle Scholar
  126. Vila, D. A., de Goncalves, L. G. G., Toll, D. L., & Rozante, J. R. (2009). Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. Journal of Hydrometeorology, 10, 533–543.  https://doi.org/10.1175/2008JHM1048.1.CrossRefGoogle Scholar
  127. Voisin, N., Wood, A. W., & Lettenmaier, D. P. (2008). Evaluation of precipitation products for global hydrological prediction. Journal of Hydrometeorology, 9, 388–407.  https://doi.org/10.1175/2007JHM938.1.CrossRefGoogle Scholar
  128. Wang, W., Xie, P., Yoo, S.-H., Xue, Y., Kumar, A., & Wu, X. (2013). An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dynamics, 37, 1601–1620.  https://doi.org/10.1007/s00382-010-0935-7.CrossRefGoogle Scholar
  129. Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. (2014). The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resources Research, 50, 7505–7514.  https://doi.org/10.1002/2014WR015638.CrossRefGoogle Scholar
  130. Willmott, C. J., Robeson, S. M., & Matsuura, K. (2017). Climate and other models may be more accurate than reported. Eos, 98.  https://doi.org/10.1029/2017EO074939.
  131. Xie, P., & Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 2539–2558.  https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.CrossRefGoogle Scholar
  132. Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., & Lin, R. (2017). Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. Journal of Hydrometeorology, 18, 1617–1641.  https://doi.org/10.1175/JHM-D-16-0168.1.CrossRefGoogle Scholar
  133. Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., & Hou, A. (2017). Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan plateau based on a high-density rain gauge network. Journal of Geophysical Research, 122, 910–924.  https://doi.org/10.1002/2016JD025418.CrossRefGoogle Scholar
  134. Yong, B., Liu, D., Gourley, J. J., Tian, Y., Huffman, G. J., Ren, L., & Hong, Y. (2015). Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bulletin of the American Meteorological Society, 96, 283–296.  https://doi.org/10.1175/BAMS-D-14-00017.1.CrossRefGoogle Scholar
  135. Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., & Ribbe, L. (2017). Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrology and Earth System Sciences, 21, 1295–1320.  https://doi.org/10.5194/hess-21-1295-2017.CrossRefGoogle Scholar
  136. Zhu, H., Wheeler, M. C., Sobel, A. H., & Hudson, D. (2014). Seamless precipitation prediction skill in the tropics and extratropics from a global model. Monthly Weather Review, 142, 1556–1569.  https://doi.org/10.1175/MWR-D-13-00222.1.CrossRefGoogle Scholar
  137. Zolina, O., Kapala, A., Simmer, C., & Gulev, S. K. (2004). Analysis of extreme precipitation over Europe from different reanalyses: A comparative assessment. Global and Planetary Change, 44, 129–161.  https://doi.org/10.1016/j.gloplacha.2004.06.009.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hylke E. Beck
    • 1
    Email author
  • Noemi Vergopolan
    • 1
  • Ming Pan
    • 1
  • Vincenzo Levizzani
    • 2
  • Albert I. J. M. van Dijk
    • 3
  • Graham P. Weedon
    • 4
  • Luca Brocca
    • 5
  • Florian Pappenberger
    • 6
  • George J. Huffman
    • 7
  • Eric F. Wood
    • 1
  1. 1.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA
  2. 2.National Research Council of ItalyInstitute of Atmospheric Sciences and Climate (CNR-ISAC)BolognaItaly
  3. 3.Fenner School of Environment & SocietyThe Australian National UniversityCanberraAustralia
  4. 4.Met Office, Joint Centre for Hydro-Meteorological ResearchWallingfordUK
  5. 5.Research Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR)PerugiaItaly
  6. 6.European Centre for Medium-range Weather ForecastsReadingUK
  7. 7.NASA, Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations