Predicting Stand Growth: Parameters, Drivers, and Modular Inputs

  • Annikki Mäkelä
  • Harry T. Valentine


In this chapter we consider different methods of estimating the inputs to the tree and stand growth models presented in this book. How does the selected method depend on the specific questions we want to ask with the model? To gain insights into this, we first outline some general ideas and theory about linking models with data. We then illustrate input quantification for model applications by introducing different methods of parameterisation for the core model presented in Chap.


  1. Albaugh TJ, Allen HL, Kress LW (2006) Root and stem partitioning of Pinus taeda. Trees 20(2):176–185CrossRefGoogle Scholar
  2. Bravo-Oviedo A, del Rio M, Calama R, Valentine HT (2013) New approaches to modelling cross-sectional area to height allometry in four mediterranean pine species. Forestry 87(3):399–406CrossRefGoogle Scholar
  3. Cajander AK (1949) Finnish forest types and their significance. Acta Forestalia Fennica 56:1–71Google Scholar
  4. Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54CrossRefGoogle Scholar
  5. Cao T, Valsta L, Mäkelä A (2010) A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in Scots pine stands. For Ecol Manage 260: 1726–1734CrossRefGoogle Scholar
  6. Dewar RC, Medlyn BE, McMurtrie RE (1999) Acclimation of the respiration/photosynthesis ratio to temperature: insights for a model. Glob Change Biol 5:612–622CrossRefGoogle Scholar
  7. Green EJ, MacFarlane DW, Valentine HT, Strawderman WE (1999) Assessing uncertainty in a stand growth model by Bayesian synthesis. For Sci 45(4):528–538Google Scholar
  8. Gregoire TG, Valentine HT (2008) Sampling strategies for natural resources and the environment. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  9. Gregoire TG, Valentine HT, Furnival GM (1995) Sampling methods to estimate foliage and other characteristics of individual trees. Ecology 76:1181–1194CrossRefGoogle Scholar
  10. Härkönen S, Pulkkinen M, Duursma RA, Mäkelä A (2010) Estimating annual GPP, NPP and stem growth in Finland using summary models. For Ecol Manage 259:524–533CrossRefGoogle Scholar
  11. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefGoogle Scholar
  12. Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in norway spruce and scots pine stands. Tree Physiol 27:1493–1504CrossRefGoogle Scholar
  13. Hu M, Lehtonen A, Minunno F, Mäkelä A (2020) Age effect on tree structure and biomass allocation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Manuscript submitted to Ann For SciGoogle Scholar
  14. Hyytiäinen K, Hari P, Kokkila T, Mäkelä A, Tahvonen O, Taipale J (2004) Connecting a process-based forest growth model to stand-level economic optimization. Can J For Res 34:2060–2073CrossRefGoogle Scholar
  15. Ilomäki S, Nikinmaa E, Mäkelä A (2003) Crown rise due to competition drives biomass allocation in silver birch (Betula pendula l.). Can J For Res 33:2395–2404CrossRefGoogle Scholar
  16. Jessen RJ (1955) Determining the fruit count on a tree by randomized branch sampling. Biometrics 11:99–109CrossRefGoogle Scholar
  17. Kalliokoski T, Nygren P, Sievänen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 42:189–210CrossRefGoogle Scholar
  18. Kalliokoski T, Mäkinen H, Linkosalo T, Mäkelä A (2016) Evaluation of stand-level hybrid PipeQual model with permanent sample plot data of Norway spruce. Can J For Res 47:234–245CrossRefGoogle Scholar
  19. Kantola A, Mäkelä A (2006) Development of biomass proportions in Norway spruce (Picea abies [l.] Karst.). Trees 20:111–121CrossRefGoogle Scholar
  20. Kantola A, Mäkinen H, Mäkelä A (2007) Stem form and branchiness of Norway spruce as sawn timber – predicted by a process-based model. For Ecol Manage 241:209–222CrossRefGoogle Scholar
  21. Kershaw JA, Ducey MJ, Beers TW, Husch B (2017) Forest mensuration. John Wiley & Sons, West SussexGoogle Scholar
  22. Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263CrossRefGoogle Scholar
  23. Kikuzawa K, Lechowicz MJ (2011) Ecology of leaf longevity. Ecological research monographs. Springer, Tokyo/Dordrecht/Heidelberg/London/New YorkCrossRefGoogle Scholar
  24. Landsberg JJ (1986) Physiological ecology of forest production. Academic Press, LondonGoogle Scholar
  25. Leppälammi-Kujansuu J, Aro L, Salemaa M, Hansson K, Kleja DB, Helmisaari HS (2014a) Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests. For Ecol Manage 326:79–90CrossRefGoogle Scholar
  26. Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS (2014b) Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment. Plant Soil 374:73–88CrossRefGoogle Scholar
  27. Litton CM, Giardina CP (2008) Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct Ecol 22:941–954CrossRefGoogle Scholar
  28. Mäkelä A (1999) Acclimation in dynamic models based on structural relationships. Funct Ecol 13:145–156CrossRefGoogle Scholar
  29. Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891–905CrossRefGoogle Scholar
  30. Mäkelä A (2003) Process-based modelling of tree and stand growth: towards a herarchical treatment of multiscale processes. Can J For Res 23:398–409CrossRefGoogle Scholar
  31. Mäkelä A, Mäkinen H (2003) Generating 3D sawlogs with a process-based growth model. For Ecol Manage 184:337–354CrossRefGoogle Scholar
  32. Mäkelä A, Valentine HT (2001) The ratio of NPP to GPP: evidence of change over the course of stand development. Tree Physiol 21:1015–1030CrossRefGoogle Scholar
  33. Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Ågren GI, Oliver CD, Puttonen P (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298CrossRefGoogle Scholar
  34. Mäkelä A, Kolari P, Karimäki J, Nikinmaa E, Perämäki M, Hari P (2006) Modelling five years of weather-driven variation of GPP in a boreal forest. Agric For Meteorol 139:382–398CrossRefGoogle Scholar
  35. Mäkelä A, Pulkkinen M, Mäkinen H (2016) Bridging empirical and carbon-balance based forest site productivity – significance of below-ground allocation. For Ecol Manage 372:64–77CrossRefGoogle Scholar
  36. Mäkelä A, Pulkkinen M, Kolari P, Lagergren F, Berbigier P, Lindroth A, Loustau D, Nikinmaa E, Vesala T, Hari P (2008a) Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob Change Biol 14:92–108Google Scholar
  37. Medlyn BE, Duursma RA, Zeppel MJ (2011) Forest productivity under climate change: a checklist for evaluating model studies. Wiley Interdiscip Rev Clim Change 2:332–355CrossRefGoogle Scholar
  38. Minunno F, Peltoniemi M, Launiainen S, Aurela M, Lindroth A, Lohila A, Mammarella I, Minkkinen K, Mäkelä A (2016) Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region. Ecol Modell 341:37–52CrossRefGoogle Scholar
  39. Niinimäki S, Tahvonen O, Mäkelä A (2012) Applying a process-based model in Norway spruce management. For Ecol Manage 265:102–115CrossRefGoogle Scholar
  40. Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198(1):214–221CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ostonen I, Helmisaari HS, Borken W, Tedersoo L, Kiukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011) Fine root foraging strategies in norway spruce forests across a european climate gradient. Glob Change Biol 17:3620–3632CrossRefGoogle Scholar
  42. Peltoniemi M, Pulkkinen M, Kolari P, Duursma R, Montagnani L, Wharton S, Lagergren F, Takagi K, Verbeeck H, Christensen T, Vesala T, Falk M, Loustau D, Mäkelä A (2012) Does canopy mean N concentration explain differences in light use efficiencies of canopies in 14 contrasting forest sites? Tree Physiol 32:200–218CrossRefPubMedPubMedCentralGoogle Scholar
  43. Peltoniemi M, Pulkkinen M, Aurela M, Pumpanen J, Kolari P, Mäkelä A (2015) A semi-empirical model of boreal forest gross primary production, evapotranspiration, and soil water – calibration and sensitivity analysis. Boreal Environ Res 20:151–171Google Scholar
  44. Reich PB, Rich RL, Lu X, Wang YP, Oleksyn J (2014) Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc Natl Acad Sci U S A 111:13703–13708CrossRefPubMedPubMedCentralGoogle Scholar
  45. Reynolds JF, Hilbert DW, Kemp PR (1993) Scaling ecophysiology from the plant to the ecosystem: a conceptual framework. In: Ehleringerl JR, Field CB (eds) Scaling physiological processes. Leaf to globe. Academic Press, San Diego, pp 127–140CrossRefGoogle Scholar
  46. Richardson AD, ZuDohna H (2003) Predicting root biomass from branching patterns of douglas-fir root systems. Oikos 100(1):96–104CrossRefGoogle Scholar
  47. Ryan MG (1991) A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiol 9:255–266CrossRefGoogle Scholar
  48. Ryan MG (1995) Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant Cell Environ 18:765–772CrossRefGoogle Scholar
  49. Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol 16: 333–343CrossRefGoogle Scholar
  50. Schlecht RM, Affleck DLR (2014) Branch aggregation and crown allometry condition the precision of randomized branch sampling estimators of conifer crown mass. Can J For Res 44(5):499–508CrossRefGoogle Scholar
  51. Schneider R, Berninger F, Ung CH, Mäkelä A, Swift DE, Zang SY (2011) Within crown variation in the relationship between foliage biomass and sapwood area in jack pine. Tree Physiol 31: 22–29CrossRefGoogle Scholar
  52. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31CrossRefGoogle Scholar
  53. Soetaert K, Petzoldt T (2010) Inverse modelling, sensitivity and Monte Carlo analysis in R using package fme. J Stat Softw 33(3):1–28CrossRefGoogle Scholar
  54. Stockfors J, Linder S (1998) The effect of nutrition on the seasonal course of needle respiration in Norway spruce stands. Trees 12:130–138CrossRefGoogle Scholar
  55. Stout BB (1956) Studies of the root systems of deciduous trees. Harvard Black Rock Forest, Cornwall-on-the-HudsonGoogle Scholar
  56. Ťupek B, Mäkipää R, Heikkinen J, Peltoniemi M, Ukonmaanaho L, Hokkanen T, Nöjd P, Nevalainen S, Lindgren M, Lehtonen A (2015) Foliar turnover rates in Finland – comparing estimates from needle-cohort and litterfall-biomass methods. Boreal Environ Res 20:283–304Google Scholar
  57. Valentine HT, Hilton SJ (1977) Sampling oak foliage by the randomized-branch method. Can J For Res 7:295–298CrossRefGoogle Scholar
  58. Valentine HT, Mäkelä A (2005) Bridging process-based and empirical approaches to modeling tree growth. Tree Physiol 25:769–779CrossRefGoogle Scholar
  59. Valentine HT, Tritton LM, Furnival GM (1984) Subsampling trees for biomass, volume„ or mineral content. For Sci 30:673–681Google Scholar
  60. Valentine HT, Gregoire TG, Burkhart HE, Hollinger DY (1997) A stand-level model of carbon allocation and growth, calibrated for loblolly pine. Can J For Res 27:817–830CrossRefGoogle Scholar
  61. Valentine HT, Green EJ, Mäkelä A, Amateis RL, Mäkinen H, Ducey MJ (2012) Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce. Trees 26:469–478CrossRefGoogle Scholar
  62. Valentine HT, Amateis RL, Gove JH, Mäkelä A (2013) Crown-rise and crown-length dynamics: application to loblolly pine. Forestry 86:371–375CrossRefGoogle Scholar
  63. Valentine HT, Baldwin VC Jr, Gregoire TG, Burkhart HE (1994a) Surrogates for foliar dry matter in loblolly pine. For Sci 40(3):576–585Google Scholar
  64. Van Oijen M, Schapendonk A, Höglind M (2010) On the relative magnitude of photosynthesis, respiration, growth andcarbon storage in vegetation. Ann Bot 105:793–797CrossRefPubMedPubMedCentralGoogle Scholar
  65. Van Oijen M, Reyer C, Bohn FJ, Cameron DR, Deckmyn G, Flechsig M, Härkönen S, Hartig F, Huth A, Kiviste A, Lasch P, Mäkelä A, Mette T, Minunno F, Rammer W (2013) Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. For Ecol Manage 289:255–268CrossRefGoogle Scholar
  66. Vuokila Y, Väliaho H (1980) Growth and yield models of planted conifer forests (in Finnish). Publications of the Finnish Forest Research Institute, HelsinkiGoogle Scholar
  67. Wertin TM, Teskey RO (2008) Close coupling of whole-plant respiration to net photosynthesis and carbohydrates. Tree Physiol 28:1831–1840CrossRefGoogle Scholar
  68. Williams K, Field CB, Mooney HA (1989) Relationships among leaf construction cost, leaf longevity, and light environment in rain-forest plants of the genus Piper. Am Nat 133: 198–211CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Annikki Mäkelä
    • 1
  • Harry T. Valentine
    • 2
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.USDA Forest ServiceNorthern Research StationDurhamUSA

Personalised recommendations