Applications and Future Outlook

  • Annikki Mäkelä
  • Harry T. Valentine


In this Chapter we review some of the applications of our modelling approach, with a critical appraisal of the results and an assessment of next steps: what are the key directions of model development at the time of conclusion of this volume? The key applications of the models comprise prediction of stand level growth, production, and economic revenue as affected by different management actions, assessing the regional variability of growth, and as an issue of ever increasing importance, analysing and predicting climate change impacts at the stand scale and also on a larger, geographical scale.


  1. Aalto J, Pirinen PI, Heikkinen J, Venäläinen AI (2013) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Climatol 112:99–111CrossRefGoogle Scholar
  2. Alegria C (2011) Simulation of silvicultural scenarios and economic efficiency for maritime pine (Pinus pinaster Aiton) wood-oriented management in centre inland of Portugal. For Syst 20:361–378Google Scholar
  3. Biegler C, Bugmann HKM (2003) Growth-dependent tree mortality models based on tree rings. Can J For Res 33:210–221CrossRefGoogle Scholar
  4. Blanco JA, Seely B, Welham C, Kimmins JP, Seebacher TM (2007) Testing the performance of a forest ecosystem model (FORECAST) against 29 years of field data in a Pseudotsuga menziesii plantation. Can J For Res 37:1808–1820CrossRefGoogle Scholar
  5. Bond-Lamberty B, Bailey VL, Chen M, Cough CM, Vargas R (2018) Globally rising soil heterotrophic respiration over recent decades. Nature 560:80–83CrossRefGoogle Scholar
  6. Cao T, Valsta L, Mäkelä A (2010) A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in Scots pine stands. For Ecol Manage 260: 1726–1734CrossRefGoogle Scholar
  7. Comins HN, McMurtrie RE (1993) Long-term response of nutrient-limited forests to CO2 enrichment; equilibrium behavior of plant-soil models. Ecol Appl 3:666–681CrossRefGoogle Scholar
  8. Coops NC, Waring RH, Landsberg JJ (1998) Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. For Ecol Manage 104:113–127CrossRefGoogle Scholar
  9. Cramer W, Bondeau A, Woodward FI, Prentice CI, Betts RA, Brovkin V (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373CrossRefGoogle Scholar
  10. Dewar RC, Lineweaver CH, Niven RK, Regenauer-Lieb K (2010) Maximum entropy production and plant optimization theories. Philos Trans R Soc B Biol Sci 365:1429 –1435CrossRefGoogle Scholar
  11. Diaz-Balteiro L, Romero C (1998) Modeling timber harvest scheduling problems with multiple criteria: an application in Spain. For Sci 44:47–57Google Scholar
  12. Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Change 69: 245–268CrossRefGoogle Scholar
  13. Doetterl S, Berhe AA, Arnold C, Bodé S, Fiener P, Finke P, Fuchslueger L, Griepentrog M, Harden JW, Nadeu E, Schnecker J, Six J, Trumbore S, Van Oost K, Vogel C, Boeckx P (2018) Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat Geosci 11:589–593CrossRefGoogle Scholar
  14. Eggers J, Lindhagen A, Lind T, Lamas T, Ohman K (2018) Balancing landscape-level forest management between recreation and wood production. Urban For Urban Green 33:1–11CrossRefGoogle Scholar
  15. Exbrayat JF, Bloom AA, Falloon P, Ito A, Smallman TL, Williams M (2018) Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties. Earth Syst Dyn 9:153–165CrossRefGoogle Scholar
  16. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Bigeochem Cycles 10:603–628CrossRefGoogle Scholar
  17. Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320CrossRefGoogle Scholar
  18. Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forests trapped in nitrogen limitation: an ecological market perspective on ectomycorrhizal symbiosis. New Phytol 203:657–666CrossRefPubMedPubMedCentralGoogle Scholar
  19. Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M, Wang H, Mäkelä A, Rebel KT, Meron E, Schymanski SJ, Rovenskaya E, Stocker BD, Zaehle S, Manzoni S, Van Oijen M, Wright IJ, Ciais P, van Bodegom PM, Peñuelas J, Hofhansl F, Terrer C, Soudzilovskaia NA, Midgley G, Prentice CI (2020) Organizing principles for vegetation dynamics. Manuscript accepted for publication in Nature PlantsGoogle Scholar
  20. Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci U S A 111:3280–3285CrossRefGoogle Scholar
  21. Gonzalez-Benecke CA, Teskey RO, Martin TA, Jokela EJ, Fox TR, Kane MB, Noormets A (2016) Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands. For Ecol Manage 361:237–256CrossRefGoogle Scholar
  22. Grace JC, Jarvis P, Norman JM (1987) Modelling the interception of solar radiant energy in intensively managed stands. N Z J For Sci 17:193–209Google Scholar
  23. Guillemot J, Martin-StPaul NK, Dufrêne E, François C, Soudani K, Ourcival JM, Delpierre N (2015) The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling. Biogeosciences 12:2773–2790CrossRefGoogle Scholar
  24. Guillemot J, Francois C, Hmimina G, Dufrâne E, Martin-StPaul NK, Soudani K, Marie G, Ourcival JM, Delpierre N (2017) Environmental control of carbon allocation matters for modelling forest growth. New Phytol 214:180–193CrossRefPubMedPubMedCentralGoogle Scholar
  25. Härkönen S, Tokola T, Packalen P, Korhonen L, Mäkelä A (2013) Predicting forest growth based on airborne light detection and ranging data, climate data, and a simplified process-based model. Can J For Res 43:354–375CrossRefGoogle Scholar
  26. Härkönen S, Neumann M, Mues V, Berninger F, Bronisz K, Cardellini G, Chirici G, Hasenauer H, Koehl M, Lang M, Merganicova K, Mohren F, Moiseyev A, Moreno A, Mura M, Muys B, Olschofsky K, Del Perugia B, Rorstad P, Solberg B, Thivolle-Cazat A, Trotsiuk V, Mäkelä A (2019) A climate-sensitive forest model for assessing impacts of forest management in Europe. Environ Model Softw 115:128–143CrossRefGoogle Scholar
  27. Högberg P, Näsholm T, Franklin O, Högberg MN (2017) Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. For Ecol Manage 403: 161–185CrossRefGoogle Scholar
  28. Henttonen H, Mäkinen H, Heiskanen J, Peltoniemi M, Laurèn A, Hordo M (2014) Response of radial increment variation of scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agric For Meteorol 198–199:294–308CrossRefGoogle Scholar
  29. Holmberg M, Aalto T, Akujärvi A, Arslan AN, Bergström I, Böttcher K, Lahtinen I, Mäkelä A, Markkanen T, Minunno F, Peltoniemi M, Rankinen K, Vihervaara P, Forsius M (2019) Ecosystem services related to carbon cycling – modeling present and future impacts in boreal forests. Front Plant Sci 10:343–351CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang C, He HS, Hawbaker TJ, Liang Y, Gong P, Wu Z, Zhu Z (2017) A coupled modeling framework for predicting ecosystem carbon dynamics in boreal forests. Environ Model Softw 93:332–343CrossRefGoogle Scholar
  31. Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hyytiäinen K, Hari P, Kokkila T, Mäkelä A, Tahvonen O, Taipale J (2004) Connecting a process-based forest growth model to stand-level economic optimization. Can J For Res 34:2060–2073CrossRefGoogle Scholar
  33. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, p 1535Google Scholar
  34. Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17CrossRefGoogle Scholar
  35. Kalliokoski T, Mäkinen H, Linkosalo T, Mäkelä A (2016) Evaluation of stand-level hybrid PipeQual model with permanent sample plot data of Norway spruce. Can J For Res 47:234–245CrossRefGoogle Scholar
  36. Kalliokoski T, Mäkelä A, Fronzek S, Minunno F, Peltoniemi M (2018) Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Can J For Res 262:192–205Google Scholar
  37. Kalliokoski T, Heinonen T, Holder J, Lehtonen A, Minunno F, Mäkelä A, Packalen T, Peltoniemi M, Pukkala T, Salminen O, Schelhaas MJ, Vauhkonen J, Kanninen M (2019) Scenario analysis of similarities and differences between models of forest development (in Finnish). Finnish Climate Panel, HelsinkiGoogle Scholar
  38. Kantola A, Mäkinen H, Mäkelä A (2007) Stem form and branchiness of Norway spruce as sawn timber – predicted by a process-based model. For Ecol Manage 241:209–222CrossRefGoogle Scholar
  39. Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Rametsteiner E, Schlamadinger B, Wunder S, Beach R (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. For Ecol Manage 105:10303–10307Google Scholar
  40. Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manage 207:59–74CrossRefGoogle Scholar
  41. Lind T, Söderberg U (1994) Considering costs and revenues in long-term forecasts of timber yields. Scand J For Res 9:397–404CrossRefGoogle Scholar
  42. Liski J, Palosuo T, Peltonimei M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Modell 189:168–182CrossRefGoogle Scholar
  43. Mäkelä A (1999) Acclimation in dynamic models based on structural relationships. Funct Ecol 13:145–156CrossRefGoogle Scholar
  44. Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Ågren GI, Oliver CD, Puttonen P (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298CrossRefGoogle Scholar
  45. Mäkelä A, Pulkkinen M, Mäkinen H (2016) Bridging empirical and carbon-balance based forest site productivity – significance of below-ground allocation. For Ecol Manage 372:64–77CrossRefGoogle Scholar
  46. Mäkelä A, Valentine HT, Helmisaari H (2008b) Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytol 180:114–123CrossRefPubMedPubMedCentralGoogle Scholar
  47. McRoberts RE, Tomppo EO, Naesset E (2010) Advances and emerging issues in national forest inventories. Scand J For Res 25:368–381CrossRefGoogle Scholar
  48. Medlyn BE, Duursma RA, Zeppel MJ (2011) Forest productivity under climate change: a checklist for evaluating model studies. Wiley Interdiscip Rev Clim Change 2:332–355CrossRefGoogle Scholar
  49. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  50. Meyer A, Grote R, Polle A, Butterbach-Bahl K (2010) Simulating mycorrhiza contribution to forest C- and N cycling-the MYCOFON model. Plant Soil 327:493–517CrossRefGoogle Scholar
  51. Minunno F, Peltoniemi M, Härkönen S, Kalliokoski T, Makinen H, Mäkelä A (2019) Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. For Ecol Manage 440:208–257CrossRefGoogle Scholar
  52. Nakicenovic N, Swart R (2000) Special report on emissions scenarios (SRES). Cambridge University Press, CambridgeGoogle Scholar
  53. Naudts K, Ryder J, McGrath MJ, Otto J, Chen Y, Valade A, Bellasen V, Berhongaray G, Boenisch G, Campioli M, Ghattas J, De Groote T, Haverd V, Kattge J, MacBean N, Maignan F, Merilä P, Penuelas J, Peylin P, Pinty B, Pretzsch H, Schulze ED, Solyga D, Vuichard N, Yan Y, Luyssaert S (2015) A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geosci Model Dev 8:2035–2065CrossRefGoogle Scholar
  54. Niinimäki S, Tahvonen O, Mäkelä A (2012) Applying a process-based model in Norway spruce management. For Ecol Manage 265:102–115CrossRefGoogle Scholar
  55. Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (face) experiments. Annu Rev Ecol Evol Syst 42:181–203CrossRefGoogle Scholar
  56. Näsholm T, Ekblad A, Nordin A, Glesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  57. Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198(1):214–221CrossRefPubMedPubMedCentralGoogle Scholar
  58. O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Change 122:387–400CrossRefGoogle Scholar
  59. O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Change 42:169–180CrossRefGoogle Scholar
  60. Rantala S (2011) Finnish forestry practice and management. Metsäkustannus, HelsinkiGoogle Scholar
  61. Rasinmaki J, Mäkinen A, Kalliovirta J (2009) SIMO: an adaptable simulation framework for multiscale forest resource data. Comput Electron Agric 66:76–84CrossRefGoogle Scholar
  62. Räisänen J, Räty O (2013) Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate simulations. Clim Dyn 41:1553–1568CrossRefGoogle Scholar
  63. Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775CrossRefGoogle Scholar
  64. Schelhaas MJ, Eggers J, Lindner M, Nabuurs GJ, Päivinen R, Schuck A, Verkerk PJ, Van der Werf DC, Zudin S (2007) Model documentation for the European Forest Information Scenario model (EFISCEN 3.1.3). Alterra report 1559 and EFI technical report 26, Wageningen and JoensuuGoogle Scholar
  65. Schiestl-Aalto P, Kulmala L, Mäkinen H, Nikinmaa E, Mäkelä A (2015) CASSIA – a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. New Phytol 206:647–659CrossRefGoogle Scholar
  66. Schiestl-Aalto P, Ryhti K, Mäkelä A, Peltoniemi M, Bäck J, Kulmala L (2019) Analysis of the NSC storage dynamics in tree organs reveals the allocation to belowground symbionts in the framework of whole tree carbon balance. Front For Glob Change 2.
  67. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563CrossRefGoogle Scholar
  68. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14:2015–2039CrossRefGoogle Scholar
  69. Stocker BD, Prentice IC, Cornell SE, Davies-Barnard T, Finzi AC, Franklin O, Janssens I, Larmola T, Manzoni T, Näsholm T, Raven JA, Rebel KT, Reed S, Vicca S, Wiltshire A, Zaehle S (2016) Terrestrial nitrogen cycling in Earth system models revisited. New Phytol 210:1165–1168CrossRefGoogle Scholar
  70. Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacal SW (2014) Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Change 4: 1099–1102CrossRefGoogle Scholar
  71. Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74CrossRefGoogle Scholar
  72. Thornley JHM, Parsons AJ (2014) Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate. J Theor Biol 342:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tomppo E, Heikkinen J, Henttonen HM, Ihalainen A, Katila M, Mäkelä H, Tuomainen T, Vainikainen N (2011) Designing and conducting a forest inventory – case: 9th national forest inventory of Finland. Managing forest ecosystems, vol 21. Springer Science & Business Media, p 272Google Scholar
  74. Tuomi M, Thum T, Järvinen H, Fronzek S, Berg B, Harmon ME, Trofymow JA, Sevanto S, Liski J (2009) Leaf litter decomposition – estimates of global variability based on Yasso07 model. Ecol Modell 220:3362–3371CrossRefGoogle Scholar
  75. Valentine HT, Mäkelä A (2012) Modeling forest stand dynamics from optimal balances of carbon and nitrogen. New Phytol 194:961–971CrossRefGoogle Scholar
  76. Van Oijen M, Reyer C, Bohn FJ, Cameron DR, Deckmyn G, Flechsig M, Härkönen S, Hartig F, Huth A, Kiviste A, Lasch P, Mäkelä A, Mette T, Minunno F, Rammer W (2013) Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. For Ecol Manage 289:255–268CrossRefGoogle Scholar
  77. Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A basic Finnish climate data set 1961–2000 – description and illustrations. Reports of the Finnish Meteorological Institute 5:1–27Google Scholar
  78. Waring RH, Coops NC, Landsberg JJ (2010) Improving predictions of forest growth using the 3-PGS model with observations made by remote sensing. For Ecol Manage 259:1722–1729CrossRefGoogle Scholar
  79. Yousefpour R, Hanewinkel M (2014) Balancing decisions for adaptive and multipurpose conversion of Norway spruce (Picea abies L. Karst) monocultures in the Black Forest area of Germany. For Sci 60:73–84Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Annikki Mäkelä
    • 1
  • Harry T. Valentine
    • 2
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.USDA Forest ServiceNorthern Research StationDurhamUSA

Personalised recommendations