Advertisement

Multimodal Molecular Imaging of the Tumour Microenvironment

  • Claudia Foray
  • Cristina Barca
  • Philipp Backhaus
  • Sonja Schelhaas
  • Alexandra Winkeler
  • Thomas Viel
  • Michael Schäfers
  • Oliver Grauer
  • Andreas H. Jacobs
  • Bastian ZinnhardtEmail author
Chapter
  • 121 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1225)

Abstract

The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.

The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.

This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.

Keywords

Tumour microenvironment PET MRI Molecular imaging Cancer TAM GAMM Myeloid derived suppressor cells Tumour infiltrating lymphocytes Immunotherapy Glioma Cancer-Associated Fibroblasts TSPO Vasculature TME 

Notes

Acknowledgements

This work was partly supported by the EU seventh Framework Programme (FP7/2007–2013) under grant agreement n° 278850 (INMiND), the Horizon2020 Programme under grant agreement n° 675417 (PET3D), the “Cells-in-Motion” Cluster of Excellence (DFG EXC1003 – CiM) and the Interdisciplinary Center for Clinical Research (IZKF core unit PIX), Münster, Germany.

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674.  https://doi.org/10.1016/j.cell.2011.02.013CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Inda M-D-M, Bonavia R, Seoane J (2014) Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel) 6:226–239CrossRefGoogle Scholar
  3. 3.
    Villa A et al (2018) Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics 8:5400–5418PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Derlin T, Grünwald V, Steinbach J, Wester HJ, Ross TL (2018) Molecular imaging in oncology using positron emission tomography. Dtsch Arztebl Int 115(11):175–181.  https://doi.org/10.3238/arztebl.2018.0175
  5. 5.
    Di Chiro G (1987) Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors a powerful diagnostic and prognostic tool. Investig Radiol 22:360–371CrossRefGoogle Scholar
  6. 6.
    Krause BJ, Schwarzenböck S, Souvatzoglou M (2013) FDG PET and PET/CT. Recent Results Cancer Res 187:351–369PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJG (2016) A systematic review on [18F]FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer 55:81–97PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Schelhaas S et al (2017) Preclinical applications of 3′-deoxy-3′-[ 18 F]fluoro-thymidine in oncology—a systematic review. Theranostics 7:40–50PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gani Sikkandhar M et al (2017) Theranostic probes for targeting tumor microenvironment: an overview. Int J Mol Sci 18:E1036.  https://doi.org/10.3390/ijms18051036CrossRefGoogle Scholar
  10. 10.
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341.  https://doi.org/10.1016/j.ccell.2017.02.009CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117:1583–1591PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Placone AL, Quiñones-Hinojosa A, Searson PC (2016) The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumor Biol 37:61–69CrossRefGoogle Scholar
  14. 14.
    Ugel S, De Sanctis F, Mandruzzato S, Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125:3365–3376PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Junck L et al (1989) PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 26:752–758PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pappata S et al (1991) PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med 32(8):1608–1610PubMedPubMedCentralGoogle Scholar
  17. 17.
    Fookes CJR et al (2008) Synthesis and biological evaluation of substituted [18F]Imidazo[1,2-a]pyridines and [18F]Pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J Med Chem 51:3700–3712PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Imaizumi M et al (2008) Brain and whole-body imaging in nonhuman primates of [11C]PBR28, a promising PET radioligand for peripheral benzodiazepine receptors. NeuroImage 39:1289–1298PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    James ML et al (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wadsworth H et al (2012) [18F]GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18kDa (TSPO). Bioorg Med Chem Lett 22:1308–1313PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Winkeler A et al (2012) The translocator protein ligand [18F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging 39:811–823PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zinnhardt B et al (2017) Combined PET imaging of the inflammatory tumor microenvironment identifies margins of unique radiotracer uptake. Cancer Res 77:1831–1841PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pigeon H et al (2019) TSPO-PET and diffusion-weighted MRI for imaging a mouse model of infiltrative human glioma. Neuro-Oncology 21:755.  https://doi.org/10.1093/neuonc/noz029CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Awde AR et al (2013) The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med 54:2125–2131PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Owen DR et al (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Janssen B, Vugts DJ, Windhorst AD, Mach RH (2018) PET imaging of microglial activation-beyond targeting TSPO. Molecules 23:E607PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Narayanaswami V et al (2018) Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol Imaging 17:1536012118792317PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shi X, Shiao SL (2018) The role of macrophage phenotype in regulating the response to radiation therapy. Transl Res 191:64PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Blykers A et al (2015) PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med 56:1265–1271PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Xavier C et al (2019) Clinical translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT imaging of protumorigenic macrophages. Mol Imaging Biol 21:1–9.  https://doi.org/10.1007/s11307-018-01302-5CrossRefGoogle Scholar
  31. 31.
    Chockalingam S, Ghosh SS (2014) Macrophage colony-stimulating factor and cancer: a review. Tumor Biol 35:10635–10644CrossRefGoogle Scholar
  32. 32.
    Horti AG et al (2019) PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A 116:1686–1691PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bronte V et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Budhwar S, Verma P, Verma R, Rai S, Singh K (2018) The Yin and Yang of myeloid derived suppressor cells. Front Immunol 9:2776PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dubinski D et al (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 18:807–818.  https://doi.org/10.1093/neuonc/nov280CrossRefPubMedGoogle Scholar
  38. 38.
    Cheng D et al (2015) Preparation and evaluation of 99m Tc-labeled anti-CD11b antibody targeting inflammatory microenvironment for colon cancer imaging. Chem Biol Drug Des 85:696–701PubMedCrossRefGoogle Scholar
  39. 39.
    Cao Q, Huang Q, Mohan C, Li C (2019) μPET/CT imaging of local and systemic immune response using 64Cu-αCD11b. J Nucl Med 118:220350.  https://doi.org/10.2967/jnumed.118.220350CrossRefGoogle Scholar
  40. 40.
    Nigam S, McCarl L, Kumar R et al (2019) Preclinical ImmunoPET Imaging of Glioblastoma-Infiltrating Myeloid Cells Using Zirconium-89 Labeled Anti-CD11b Antibody. Molecular Imaging and Biology.  https://doi.org/10.1007/s11307-019-01427-1
  41. 41.
    Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500PubMedCrossRefGoogle Scholar
  43. 43.
    Fleming V et al (2018) Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol 9:398PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Park S-M, Youn J-I (2019) Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Arch Pharm Res 42:1–7.  https://doi.org/10.1007/s12272-019-01165-6CrossRefGoogle Scholar
  45. 45.
    Broos K et al (2018) Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics 8:3559–3570PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Heskamp S et al (2015) Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res 75:2928–2936PubMedCrossRefGoogle Scholar
  47. 47.
    Josefsson A et al (2016) Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res 76:472–479PubMedCrossRefGoogle Scholar
  48. 48.
    Nedrow JR et al (2017) Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J Nucl Med 58:1560–1566PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chatterjee S et al (2016) A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget 7:10215–10227PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lesniak WG et al (2016) PD-L1 detection in tumors using [(64)Cu]Atezolizumab with PET. Bioconjug Chem 27:2103–2110PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kikuchi M et al (2017) Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology 6:e1329071PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Natarajan A et al (2015) Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26:2062–2069PubMedCrossRefGoogle Scholar
  53. 53.
    England CG et al (2017) Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med 58:162–168PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cole EL et al (2017) Radiosynthesis and preclinical PET evaluation of 89Zr-nivolumab (BMS-936558) in healthy non-human primates. Bioorg Med Chem 25:5407–5414PubMedCrossRefGoogle Scholar
  55. 55.
    England CG et al (2018) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110–120PubMedCrossRefGoogle Scholar
  56. 56.
    Du Y et al (2017) Nuclear and fluorescent labeled PD-1-liposome-DOX-64Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Mol Pharm 14:3978–3986PubMedCrossRefGoogle Scholar
  57. 57.
    Du Y et al (2017) Improved resection and prolonged overall survival with PD-1-IRDye800CW fluorescence probe-guided surgery and PD-1 adjuvant immunotherapy in 4T1 mouse model. Int J Nanomed 12:8337–8351CrossRefGoogle Scholar
  58. 58.
    Niemeijer A-LN et al (2017) Whole body PD-1 and PD-L1 PET with 89Zr-nivolumab and 18F-BMS-986192 in pts with NSCLC. J Clin Oncol 35:e20047–e20047CrossRefGoogle Scholar
  59. 59.
    Higashikawa K et al (2014) 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One 9:e109866PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ehlerding EB et al (2017) ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm 14:1782–1789PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rashidian M et al (2017) Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med 214:2243–2255PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Maute RL et al (2015) Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A 112:E6506–E6514PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Broos K et al (2017) Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget 8:41932–41946PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tavaré R et al (2014) Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A 111:1108–1113.  https://doi.org/10.1073/pnas.1316922111CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Seo JW et al (2018) CD8 + T-cell density imaging with 64Cu-labeled cys-diabody informs immunotherapy protocols. Clin Cancer Res 24:4976–4987PubMedPubMedCentralGoogle Scholar
  66. 66.
    Tavaré R et al (2015) ImmunoPET of murine T cell reconstitution post-adoptive stem cell transplant using anti-CD4 and anti-CD8 cys-diabodies. J Nucl Med 56:1258–1264.  https://doi.org/10.2967/jnumed.114.153338CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL (2016) Neutrophils in cancer. Immunol Rev 273:312–328PubMedCrossRefGoogle Scholar
  68. 68.
    Mohanty T et al (2019) Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun 10:1667.  https://doi.org/10.1038/s41467-019-09040-0CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shaul ME, Fridlender ZG (2019) Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol 16:601.  https://doi.org/10.1038/s41571-019-0222-4CrossRefPubMedGoogle Scholar
  70. 70.
    Ocana A, Nieto-Jiménez C, Pandiella A, Templeton AJ (2017) Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 16:137.  https://doi.org/10.1186/s12943-017-0707-7CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tsopelas C (2015) Radiotracers used for the scintigraphic detection of infection and inflammation. ScientificWorldJournal 2015:676719.  https://doi.org/10.1155/2015/676719CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Derian CK et al (1996) Selective inhibition of N-formylpeptide-induced neutrophil activation by carbamate-modified peptide analogues. Biochemistry 35:1265–1269PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Locke LW et al (2009) A novel neutrophil-specific PET imaging agent: cFLFLFK-PEG-64 Cu. J Nucl Med 50:790–797.  https://doi.org/10.2967/jnumed.108.056127CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pellico J et al (2017) In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Sci Rep 7:13242.  https://doi.org/10.1038/s41598-017-12829-yCrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18:1–15CrossRefGoogle Scholar
  76. 76.
    Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD (2014) Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl 8:454–463PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598CrossRefGoogle Scholar
  78. 78.
    Garin-Chesa P, Old LJ, Rettig WJ (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A 87:7235–7239PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Levy MT et al (1999) Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29:1768–1778PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Acharya PS, Zukas A, Chandan V, Katzenstein ALA, Puré E (2006) Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 37:352–360PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Brokopp CE et al (2011) Fibroblast activation protein is induced by inflammation and degrades type i collagen in thin-cap fibroatheromata. Eur Heart J 32:2713–2722PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bauer S et al (2006) Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther 8:1–11CrossRefGoogle Scholar
  83. 83.
    Ariga N, Ohtani H, Nagura H, Sato E, Ohuchi N (2002) Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer 95:67–72CrossRefGoogle Scholar
  84. 84.
    Iwasa S, Jin X, Okada K, Mitsumata M, Ooi A (2003) Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colorectal cancer. Cancer Lett 199:91–98PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hofheinz RD et al (2003) Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26:44–48PubMedPubMedCentralGoogle Scholar
  86. 86.
    Jansen K et al (2013) Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med Chem Lett 4:491–496PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Laverman P et al (2015) Immuno-PET and immuno-SPECT of rheumatoid arthritis with radiolabeled anti-fibroblast activation protein antibody correlates with severity of arthritis. J Nucl Med 56:778–783PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kratochwil C et al (2019) FAPI-PET/CT: mean intensity of tracer-uptake (SUV) in 28 different kinds of cancer. J Nucl Med 119:227967.  https://doi.org/10.2967/jnumed.119.227967CrossRefGoogle Scholar
  89. 89.
    Giesel FL et al (2018) 68 Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 60:386–392PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lindner T et al (2018) Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59:1415–1422PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Loktev A et al (2018) A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med 59:1423–1429PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fischer I, Gagner J-P, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    García-Figueiras R et al (2015) Imaging of tumor angiogenesis for radiologists—part 1: biological and technical basis. Curr Probl Diagn Radiol 44:407–424PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Yankeelov TE, Abramson RG, Quarles CC (2014) Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol 11:670–680PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Li D et al (2014) (68)Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study. Mol Pharm 11:3923–3929PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Rainer E et al (2018) The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma. Eur J Nucl Med Mol Imaging 45:2396–2403PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wenger KJ et al (2017) Bevacizumab as a last-line treatment for glioblastoma following failure of radiotherapy, temozolomide and lomustine. Oncol Lett 14:1141–1146PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Jansen MH et al (2017) Molecular drug imaging: 89 Zr-bevacizumab PET in children with diffuse intrinsic pontine glioma. J Nucl Med 58:711–716PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Niccoli Asabella A, Di Palo A, Altini C, Ferrari C, Rubini G (2017) Multimodality imaging in tumor angiogenesis: present status and perspectives. Int J Mol Sci 18:1864PubMedCentralCrossRefGoogle Scholar
  101. 101.
    Liu J et al (2019) Design and synthesis of novel dual-cyclic RGD peptides for αvβ3 integrin targeting. Bioorg Med Chem Lett 29:896–900PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Lu X, Fu Wang R (2012) A concise review of current radiopharmaceuticals in tumor angiogenesis imaging. Curr Pharm Des 18:1032–1040PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yu C et al (2015) 18 F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur J Nucl Med Mol Imaging 42:2021–2028PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhao Z-Q, Ji S, Li X-Y, Fang W, Liu S (2019) 68Ga-labeled dimeric and trimeric cyclic RGD peptides as potential PET radiotracers for imaging gliomas. Appl Radiat Isot 148:168–177PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Bekaert L et al (2017) [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur J Nucl Med Mol Imaging 44:1383–1392CrossRefGoogle Scholar
  106. 106.
    Fushimi Y et al (2019) Grading of glioma: comparison between 18F-FMISO-PET, apparent diffusion coefficient and gadolinium enhancement. J Nucl Med 60:398–398Google Scholar
  107. 107.
    Kanoto M et al (2018) Correlation between hypoxic area in primary brain tumors and WHO grade: differentiation from malignancy using 18F-fluoromisonidazole positron emission tomography. Acta Radiol 59:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Quartuccio N, Asselin M-C (2018) The validation path of hypoxia PET imaging: focus on brain tumours. Curr Med Chem 25:3074–3095CrossRefGoogle Scholar
  109. 109.
    Häfliger P, Charles R-P (2019) The L-type amino acid transporter LAT1-an emerging target in cancer. Int J Mol Sci 20:E2428.  https://doi.org/10.3390/ijms20102428CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ericson K et al (1985) Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9:683–689PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lundemann M et al (2019) Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging 46:603–613PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Stegmayr C, Willuweit A, Lohmann P, Langen K-J (2019) O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) in neurooncology: a review of experimental results. Curr Radiopharm 12:201PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Ikotun OF, Marquez BV, Huang C, Masuko K, Daiji M (2013) Imaging the L-type amino acid transporter-1 (LAT1) with Zr-89 ImmunoPET. PLoS One 8:77476CrossRefGoogle Scholar
  114. 114.
    Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487PubMedPubMedCentralGoogle Scholar
  115. 115.
    Gordon Y et al (2014) Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther 4:147–164PubMedPubMedCentralGoogle Scholar
  116. 116.
    Yoo R-E, Choi SH (2016) Recent application of advanced MR imaging to predict pseudoprogression in high-grade glioma patients. Magn Reson Med Sci 15:165–177PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Morabito R et al (2019) DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial brain tumors treated by radiosurgery with cyberknife. Radiat Oncol 14:65PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lee SJ et al (2001) Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol 2:1PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gururangan S et al (2010) Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J Clin Oncol 28:3069–3075PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Patel P et al (2017) MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro-Oncology 19:118–127PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Barajas RF et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253:486–496PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Barajas RF et al (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30:367–372.  https://doi.org/10.3174/ajnr.A1362CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Liu TT, Brown GG (2007) Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods. J Int Neuropsychol Soc 13:517–525PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Noguchi T et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol 29:688–693.  https://doi.org/10.3174/ajnr.A0903CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Choi YJ, Kim HS, Jahng G-H, Kim SJ, Suh DC (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 54:448–454PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Xie L et al (2019) Task-enhanced arterial spin labeled perfusion MRI predicts longitudinal neurodegeneration in mild cognitive impairment. Hippocampus 29:26–36PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Nievelstein RAJ, Littooij AS (2019) Whole-body MRI in pediatric oncology. Pediatric Oncol 107–135.  https://doi.org/10.1007/978-3-030-03777-2_7l

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Claudia Foray
    • 1
    • 2
  • Cristina Barca
    • 1
    • 2
  • Philipp Backhaus
    • 1
    • 3
  • Sonja Schelhaas
    • 1
  • Alexandra Winkeler
    • 4
  • Thomas Viel
    • 5
  • Michael Schäfers
    • 1
    • 3
  • Oliver Grauer
    • 6
  • Andreas H. Jacobs
    • 1
    • 2
    • 7
  • Bastian Zinnhardt
    • 1
    • 2
    • 3
    Email author
  1. 1.European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
  2. 2.PET Imaging in Drug Design and Development (PET3D)MünsterGermany
  3. 3.Department of Nuclear MedicineUniversity Hospital Münster, Westfälische Wilhelms University MünsterMünsterGermany
  4. 4.UMR 1023, IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-SaclayOrsayFrance
  5. 5.Paris Centre de Recherche Cardiovasculaire, INSERM-U970, Université Paris DescartesParisFrance
  6. 6.Department of NeurologyUniversity Hospital MünsterMünsterGermany
  7. 7.Department of GeriatricsJohanniter Hospital, Evangelische KlinikenBonnGermany

Personalised recommendations