Tumor Microenvironment pp 137-153 | Cite as
The Microbiome as a Component of the Tumor Microenvironment
- 14 Citations
- 1 Mentions
- 1.6k Downloads
Abstract
Microbes, which live in the human body, affect a large set of pathophysiological processes. Changes in the composition and proportion of the microbiome are associated with metabolic diseases (Fulbright et al., PLoS Pathog 13:e1006480, 2017; Maruvada et al., Cell Host Microbe 22:589–599, 2017), psychiatric disorders (Macfabe, Glob Adv Health Med 2:52–66, 2013; Kundu et al., Cell 171:1481–1493, 2017), and neoplastic diseases (Plottel and Blaser, Cell Host Microbe 10:324–335, 2011; Schwabe and Jobin, Nat Rev Cancer 13:800–812, 2013; Zitvogel et al., Cell 165:276–287, 2016). However, the number of directly tumorigenic bacteria is extremely low. Microbial dysbiosis is connected to cancers of the urinary tract (Yu, Arch Med Sci 11:385–394, 2015), cervix (Chase, Gynecol Oncol 138:190–200, 2015), skin (Yu et al., J Drugs Dermatol 14:461–465, 2015), airways (Gui et al., Genet Mol Res 14:5642–5651, 2015), colon (Garrett, Science 348:80–86, 2015), lymphomas (Yamamoto and Schiestl, Int J Environ Res Public Health 11:9038–9049, 2014; Yamamoto and Schiestl, Cancer J 20:190–194, 2014), prostate (Yu, Arch Med Sci 11:385–394, 2015), and breast (Flores et al., J Transl Med 10:253, 2012; Fuhrman et al., J Clin Endocrinol Metab 99:4632–4640, 2014; Xuan et al., PLoS One 9:e83744, 2014; Goedert et al., J Natl Cancer Inst 107:djv147, 2015; Chan et al., Sci Rep 6:28061, 2016; Hieken et al., Sci Rep 6:30751, 2016; Urbaniak et al., Appl Environ Microbiol 82:5039–5048, 2016; Goedert et al., Br J Cancer 118:471–479, 2018). Microbial dysbiosis can influence organs in direct contact with the microbiome and organs that are located at distant sites of the body. The altered microbiota can lead to a disruption of the mucosal barrier (Plottel and Blaser, Cell Host Microbe 10:324–335, 2011), promote or inhibit tumorigenesis through the modification of immune responses (Kawai and Akira, Int Immunol 21:317–337, 2009; Dapito et al., Cancer Cell 21:504–516, 2012) and microbiome-derived metabolites, such as estrogens (Flores et al., J Transl Med 10:253, 2012; Fuhrman et al., J Clin Endocrinol Metab 99:4632–4640, 2014), secondary bile acids (Rowland, Role of the gut flora in toxicity and cancer, Academic Press, London, p x, 517 p., 1988; Yoshimoto et al., Nature 499:97–101, 2013; Xie et al., Int J Cancer 139:1764–1775, 2016; Shellman et al., Clin Otolaryngol 42:969–973, 2017; Luu et al., Cell Oncol (Dordr) 41:13–24, 2018; Miko et al., Biochim Biophys Acta Bioenerg 1859:958–974, 2018), short-chain fatty acids (Bindels et al., Br J Cancer 107:1337–1344, 2012), lipopolysaccharides (Dapito et al., Cancer Cell 21:504–516, 2012), and genotoxins (Fulbright et al., PLoS Pathog 13:e1006480, 2017). Thus, altered gut microbiota may change the efficacy of chemotherapy and radiation therapy (McCarron et al., Br J Biomed Sci 69:14–17, 2012; Viaud et al., Science 342:971–976, 2013; Montassier et al., Aliment Pharmacol Ther 42:515–528, 2015; Buchta Rosean et al., Adv Cancer Res 143:255–294, 2019). Taken together, microbial dysbiosis has intricate connections with neoplastic diseases; hereby, we aim to highlight the major contact routes.
Keywords
Microbiome Breast cancer Tumor microenvironment Bacterial metabolite Bacterial metabolism Antitumor immunity Tumor metabolism Epithelial-mesenchymal transition Tumorigenesis Metastasis ChemotherapyNotes
Acknowledgments
Our work is supported by grants from NKFIH (K123975, PD124110, FK128387, GINOP-2.3.2-15-2016-00006) and the Hungarian Academy of Sciences (NKM-26/2019). EM is supported by a Bolyai Fellowship from the Hungarian Academy of Sciences. We are grateful to Dr. Karen Uray (Department of Medical Chemistry, University of Debrecen) for the revision of the text.
References
- 1.Fulbright LE, Ellermann M, Arthur JC (2017) The microbiome and the hallmarks of cancer. PLoS Pathog 13(9):e1006480PubMedPubMedCentralGoogle Scholar
- 2.Maruvada P et al (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22(5):589–599PubMedGoogle Scholar
- 3.Macfabe D (2013) Autism: metabolism, mitochondria, and the microbiome. Glob Adv Health Med 2(6):52–66PubMedPubMedCentralGoogle Scholar
- 4.Kundu P et al (2017) Our gut microbiome: the evolving inner self. Cell 171(7):1481–1493PubMedGoogle Scholar
- 5.Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335PubMedPubMedCentralGoogle Scholar
- 6.Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13(11):800–812PubMedPubMedCentralGoogle Scholar
- 7.Zitvogel L et al (2016) Microbiome and anticancer immunosurveillance. Cell 165(2):276–287PubMedGoogle Scholar
- 8.Yu H et al (2015) Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 11(2):385–394PubMedPubMedCentralGoogle Scholar
- 9.Chase D et al (2015) The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol 138(1):190–200PubMedGoogle Scholar
- 10.Yu Y et al (2015) The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. J Drugs Dermatol 14(5):461–465PubMedGoogle Scholar
- 11.Gui QF et al (2015) Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 14(2):5642–5651PubMedGoogle Scholar
- 12.Garrett WS (2015) Cancer and the microbiota. Science 348(6230):80–86PubMedPubMedCentralGoogle Scholar
- 13.Yamamoto ML, Schiestl RH (2014) Lymphoma caused by intestinal microbiota. Int J Environ Res Public Health 11(9):9038–9049PubMedPubMedCentralGoogle Scholar
- 14.Yamamoto ML, Schiestl RH (2014) Intestinal microbiome and lymphoma development. Cancer J 20(3):190–194PubMedPubMedCentralGoogle Scholar
- 15.Flores R et al (2012) Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 10:253PubMedPubMedCentralGoogle Scholar
- 16.Fuhrman BJ et al (2014) Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab 99(12):4632–4640PubMedPubMedCentralGoogle Scholar
- 17.Xuan C et al (2014) Microbial dysbiosis is associated with human breast cancer. PLoS One 9(1):e83744PubMedPubMedCentralGoogle Scholar
- 18.Goedert JJ et al (2015) Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 107(8):djv147PubMedPubMedCentralGoogle Scholar
- 19.Chan AA et al (2016) Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep 6:28061PubMedPubMedCentralGoogle Scholar
- 20.Hieken TJ et al (2016) The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 6:30751PubMedPubMedCentralGoogle Scholar
- 21.Urbaniak C et al (2016) The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82(16):5039–5048PubMedPubMedCentralGoogle Scholar
- 22.Goedert JJ et al (2018) Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer 118(4):471–479PubMedPubMedCentralGoogle Scholar
- 23.Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337PubMedPubMedCentralGoogle Scholar
- 24.Dapito DH et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516PubMedPubMedCentralGoogle Scholar
- 25.Rowland IR (1988) Role of the gut flora in toxicity and cancer. Academic Press, London, p x, 517 pGoogle Scholar
- 26.Yoshimoto S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101PubMedGoogle Scholar
- 27.Xie G et al (2016) Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 139(8):1764–1775PubMedPubMedCentralGoogle Scholar
- 28.Shellman Z et al (2017) Bile acids: a potential role in the pathogenesis of pharyngeal malignancy. Clin Otolaryngol 42(5):969–973PubMedGoogle Scholar
- 29.Luu TH et al (2018) Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol (Dordr) 41(1):13–24Google Scholar
- 30.Miko E et al (2018) Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim Biophys Acta Bioenerg 1859(9):958–974PubMedGoogle Scholar
- 31.Bindels LB et al (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 107(8):1337–1344PubMedPubMedCentralGoogle Scholar
- 32.McCarron AJ et al (2012) Antibacterial effects on acinetobacter species of commonly employed antineoplastic agents used in the treatment of haematological malignancies: an in vitro laboratory evaluation. Br J Biomed Sci 69(1):14–17PubMedGoogle Scholar
- 33.Viaud S et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976PubMedPubMedCentralGoogle Scholar
- 34.Montassier E et al (2015) Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther 42(5):515–528PubMedGoogle Scholar
- 35.Buchta Rosean C et al (2019) Impact of the microbiome on cancer progression and response to anti-cancer therapies. Adv Cancer Res 143:255–294PubMedGoogle Scholar
- 36.Garcia-Castillo V et al (2016) Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol 65(12):1347–1362PubMedGoogle Scholar
- 37.Arslan N (2014) Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol 20(44):16452–16463PubMedPubMedCentralGoogle Scholar
- 38.Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379PubMedGoogle Scholar
- 39.Khan AA, Shrivastava A, Khurshid M (2012) Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim Biophys Acta 1826(2):331–337PubMedGoogle Scholar
- 40.Walsh CJ et al (2014) Beneficial modulation of the gut microbiota. FEBS Lett 588(22):4120–4130PubMedGoogle Scholar
- 41.Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16(7):1024–1033PubMedPubMedCentralGoogle Scholar
- 42.Kovacs T et al (2019) Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep 9(1):1300PubMedPubMedCentralGoogle Scholar
- 43.Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedPubMedCentralGoogle Scholar
- 44.Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596PubMedGoogle Scholar
- 45.Fernandez MF et al (2018) Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health 15(8):E1747PubMedGoogle Scholar
- 46.Hackam DJ, Good M, Sodhi CP (2013) Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: toll-like receptors throw the switch. Semin Pediatr Surg 22(2):76–82PubMedPubMedCentralGoogle Scholar
- 47.Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465PubMedPubMedCentralGoogle Scholar
- 48.Yang JC et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30(8):825–830PubMedPubMedCentralGoogle Scholar
- 49.Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454PubMedPubMedCentralGoogle Scholar
- 50.Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084PubMedPubMedCentralGoogle Scholar
- 51.Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089PubMedPubMedCentralGoogle Scholar
- 52.Gopalakrishnan V et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103PubMedGoogle Scholar
- 53.Matson V et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108PubMedPubMedCentralGoogle Scholar
- 54.Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97PubMedGoogle Scholar
- 55.Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259PubMedGoogle Scholar
- 56.Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672PubMedGoogle Scholar
- 57.Miko E et al (2019) Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored. Cell 8(4):E293Google Scholar
- 58.Gandhi N, Das GM (2019) Metabolic reprogramming in breast cancer and its therapeutic implications. Cell 8(2):E89Google Scholar
- 59.Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114(43):E9066–E9075PubMedPubMedCentralGoogle Scholar
- 60.Ivan J et al (2017) The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev 26(23):1724–1733PubMedPubMedCentralGoogle Scholar
- 61.Fruge AD et al (2018) Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast Cancer participating in a presurgical weight loss trial. J Acad Nutr Diet. https://doi.org/10.1016/j.jand.2018.08.164
- 62.Swales KE et al (2006) The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res 66(20):10120–10126PubMedGoogle Scholar
- 63.Salaspuro M (1997) Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict Biol 2(1):35–46PubMedGoogle Scholar
- 64.Vida A et al (2018) Deletion of poly(ADPribose) polymerase-1 changes the composition of the microbiome in the gut. Mol Med Rep 18(5):4335–4341PubMedPubMedCentralGoogle Scholar
- 65.Morgan XC et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79PubMedPubMedCentralGoogle Scholar
- 66.Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383(3–4):375–388PubMedGoogle Scholar
- 67.Khoruts A et al (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44(5):354–360PubMedGoogle Scholar
- 68.Roh YS, Seki E (2013) Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 28(Suppl 1):38–42PubMedPubMedCentralGoogle Scholar
- 69.Zambirinis CP et al (2014) Pancreatic cancer, inflammation, and microbiome. Cancer J 20(3):195–202PubMedPubMedCentralGoogle Scholar
- 70.Houghton AM (2013) Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13(4):233–245PubMedGoogle Scholar
- 71.Schmidt BL et al (2014) Changes in abundance of oral microbiota associated with oral cancer. PLoS One 9(6):e98741PubMedPubMedCentralGoogle Scholar
- 72.Zackular JP et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4(6):e00692–e00613PubMedPubMedCentralGoogle Scholar
- 73.Arthur JC, Jobin C (2011) The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 17(1):396–409PubMedPubMedCentralGoogle Scholar
- 74.Banerjee S et al (2015) Distinct microbiological signatures associated with triple negative breast cancer. Sci Rep 5:15162PubMedPubMedCentralGoogle Scholar
- 75.Luu TH et al (2017) Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer 69(2):267–275PubMedGoogle Scholar