Novel Techniques to Study the Bone-Tumor Microenvironment

  • Alison B. Shupp
  • Alexus D. Kolb
  • Karen M. BussardEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1225)


Many cancers commonly metastasize to bone. After entering the bone, cancer cells can interact with surrounding stromal cells, which ultimately influences metastasis progression. Extracellular vesicles, direct cell contact and gap junctions, and cytokines are all mechanisms of intercellular communication that have been observed to occur in the bone microenvironment. These methods of cellular crosstalk can occur between cancer cells and a variety of stromal cells, with each interaction having a different impact on cancer progression. Communication between cancer cells and bone-resident cells has previously been implicated in processes such as cancer cell trafficking and arrest in bone, cancer cell dormancy, cancer cell reactivation, and proliferation. In this chapter we review innovative techniques and model systems that can be used to study bidirectional crosstalk between cancer cells and stromal cells in the bone, with an emphasis specifically on bone-metastatic breast cancer. Investigating how metastatic cancer cells interact with, and are influenced by, the bone microenvironment is crucial to better understanding of the progression of bone metastasis.


Breast cancer Bone Metastasis Tumor microenvironment Extracellular vesicle Exosome Gap junction Cytokine Osteoblast Osteoclast Crosstalk Stroma CD63 Fluorescence microscopy IL-6 IL-8 Vicious cycle Bone-like scaffolds Bioreactor 


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30CrossRefGoogle Scholar
  2. 2.
    Florencio-Silva R et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561:3–12PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Takahashi N et al (2002) Cells of bone: osteoclast generation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, CA, pp 109–126Google Scholar
  5. 5.
    Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13(4):285–292PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238CrossRefGoogle Scholar
  7. 7.
    Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Mazo IB, von Andrian UH (1999) Adhesion and homing of blood-borne cells in bone marrow microvessels. J Leukoc Biol 66:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Phadke PA et al (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12:1431–1440PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bussard KM et al (2010) Localization of MCP-1, VEGF, and IL-6 in the bone microenvironment of mice bearing metastatic breast cancer. Clin Exp Metastasis 27:331–340PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Marks SC Jr, Odgren PR (2002) Structure and development of the skeleton. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, CA, pp 3–16CrossRefGoogle Scholar
  12. 12.
    Pedersen EA et al (2012) The prostate cancer bone marrow niche: more than just ‘fertile soil’. Asian J Androl 14(3):423–427PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Walker ND et al (2019) Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis 10(2):59PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lim PK et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71(5):1550–1560PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Bliss SA et al (2016) Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 76(19):5832–5844PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Vera-Ramirez L, Hunter KW (2017) Tumor cell dormancy as an adaptive cell stress response mechanism. F1000Res 6:2134PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Guise TA (2002) The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2(6):570–572PubMedPubMedCentralGoogle Scholar
  19. 19.
    Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wang H et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27(2):193–210PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kolb AD et al (2019) Osteoblasts are “educated” by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res 21(1):31PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lasser C, Jang SC, Lotvall J (2018) Subpopulations of extracellular vesicles and their therapeutic potential. Mol Asp Med 60:1–14CrossRefGoogle Scholar
  23. 23.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gyorgy B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Minciacchi VR et al (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6(13):11327–11341PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Thakur BK et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Guescini M et al (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 117(1):1–4CrossRefGoogle Scholar
  28. 28.
    Melo SA et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sato S, Weaver AM (2018) Extracellular vesicles: important collaborators in cancer progression. Essays Biochem 62(2):149–163PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Costa-Silva B et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Grange C et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tiedemann K et al (2019) Exosomal release of L-plastin by breast cancer cells facilitates metastatic bone osteolysis. Transl Oncol 12(3):462–474PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liu X et al (2018) Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20(1):127PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Faict S et al (2018) Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J 8(11):105PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nakata R et al (2017) Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles 6(1):1332941PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ringuette Goulet C et al (2018) Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res 16(7):1196–1204PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Webber JP et al (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34(3):290–302PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yan W et al (2018) Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 20(5):597–609PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu H et al (2018) Exosomal alphavbeta6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 70:20–35PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gabrusiewicz K et al (2018) Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7(4):e1412909PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Salimu J et al (2017) Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J Extracell Vesicles 6(1):1368823PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nabet BY et al (2017) Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170(2):352–366.e13PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Vallabhaneni KC et al (2017) Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway. Oncotarget 8(66):109861–109876PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gardiner C et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:32945PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Tkach M, Kowal J, Thery C (2018) Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond Ser B Biol Sci 373(1737):20160479CrossRefGoogle Scholar
  48. 48.
    Thery C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kowal J et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wu Y, Deng W, Klinke DJ 2nd (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140(19):6631–6642PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Overmiller AM et al (2017) Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J 31(8):3412–3424PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Escola JM et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Matsumoto A et al (2017) Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci 108(9):1803–1810PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hu JL et al (2019) CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 18(1):91PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zomer A et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161(5):1046–1057PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lai CP et al (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sethi N et al (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zheng H et al (2017) Therapeutic antibody targeting tumor- and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32(6):731–747.e6PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lu X et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging a4b1-positive osteoclast progenitors. Cancer Cell 20:701–714PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lawson MA et al (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Stains JP, Civitelli R (2005) Gap junctions in skeletal development and function. Biochim Biophys Acta 1719(1–2):69–81PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Donahue HJ et al (1995) Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function. J Bone Miner Res 10(6):881–889PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chaible LM et al (2011) Delayed osteoblastic differentiation and bone development in Cx43 knockout mice. Toxicol Pathol 39(7):1046–1055PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Monaghan P et al (1996) Gap junction distribution and connexin expression in human breast. Exp Cell Res 223(1):29–38PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Laird DW et al (1999) Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59(16):4104–4110PubMedPubMedCentralGoogle Scholar
  66. 66.
    Chasampalioti M et al (2019) Connexin 43 is an independent predictor of patient outcome in breast cancer patients. Breast Cancer Res Treat 174(1):93–102PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Li Z et al (2008) Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis 25(8):893–901PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Plante I et al (2011) Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene 30(14):1681–1692PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wang H et al (2018) The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34(5):823–839.e7PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14(3):741–759PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Raptis LH et al (1994) A novel technique for the study of intercellular, junctional communication: electroporation of adherent cells on a partly conductive slide. DNA Cell Biol 13(9):963–975PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    el-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168(2):422–430PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Abbaci M et al (2008) Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. BioTechniques 45(1):33–52, 56–62PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Goldberg GS, Bechberger JF, Naus CC (1995) A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. BioTechniques 18(3):490–497PubMedPubMedCentralGoogle Scholar
  75. 75.
    Abbaci M et al (2007) Gap junctional intercellular communication capacity by gap-FRAP technique: a comparative study. Biotechnol J 2(1):50–61PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Manjarrez-Marmolejo J, Franco-Perez J (2016) Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr Neuropharmacol 14(7):759–771PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sagar GD, Larson DM (2006) Carbenoxolone inhibits junctional transfer and upregulates Connexin43 expression by a protein kinase A-dependent pathway. J Cell Biochem 98(6):1543–1551PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Harks EG et al (2001) Fenamates: a novel class of reversible gap junction blockers. J Pharmacol Exp Ther 298(3):1033–1041PubMedPubMedCentralGoogle Scholar
  79. 79.
    Pan F, Mills SL, Massey SC (2007) Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci 24(4):609–618PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Weingart R, Bukauskas FF (1998) Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanism of gap junction channels. Pflugers Arch 435(2):310–319PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther 246(3):1104–1107PubMedPubMedCentralGoogle Scholar
  82. 82.
    Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Shulby SA et al (2004) CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 64(14):4693–4698PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jamieson-Gladney WL et al (2011) The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res 13(5):R91PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jamieson WL et al (2008) CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68(6):1715–1722PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bussard KM, Venzon DJ, Mastro AM (2010) Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J Cell Biochem 111:1138–1148PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Shupp AB et al (2018) Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel) 10(6):E182CrossRefGoogle Scholar
  88. 88.
    Yumoto K et al (2016) Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6:36520PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lee E et al (2016) Growth arrest-specific 6 (GAS6) promotes prostate cancer survival by G1 arrest/S phase delay and inhibition of apoptosis during chemotherapy in bone marrow. J Cell Biochem 117(12):2815–2824PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li J et al (2017) Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell 31(2):225–239PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tibes R et al (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Clarke R (1996) Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat 39(1):69–86PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    DeRose YS et al (2013) Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol Chap. 14:Unit14.23Google Scholar
  95. 95.
    Wright LE et al (2016) Murine models of breast cancer bone metastasis. Bonekey Rep 5:804PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Campbell JP et al (2012) Models of bone metastasis. J Vis Exp 67:e4260Google Scholar
  97. 97.
    Kang Y et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Res 3:537–549Google Scholar
  98. 98.
    Yoneda T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MD-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Schlimok G et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci U S A 84(23):8672–8676PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Passlick B et al (1994) Immunohistochemical assessment of individual tumor cells in lymph nodes of patients with non-small-cell lung cancer. J Clin Oncol 12(9):1827–1832PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Espina V et al (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603CrossRefGoogle Scholar
  102. 102.
    Shahriari K et al (2017) Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene 36(20):2846–2856PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Klein CA et al (2002) Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol 20(4):387–392PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Schardt JA et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8(3):227–239PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Schmidt-Kittler O et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100(13):7737–7742PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jang JS et al (2019) Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J 9(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Matei I, Rampersaud S, Lyden D (2018) Engineered niches model the onset of metastasis. Nat Biomed Eng 2:885–887PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Vanderburgh JP, Guelcher SA, Sterling JA (2018) 3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment. J Cell Biochem 119:5053–5059PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Cassereau L et al (2015) A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype. J Biotechnol 193:66–69PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Petersen OW et al (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89(19):9064–9068PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Carter DR, Hayes W (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Jt Surg 59A:954–962CrossRefGoogle Scholar
  114. 114.
    Yao Q et al (2015) Design, construction, and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Med 26(1):5360PubMedPubMedCentralGoogle Scholar
  115. 115.
    Bruyas A et al (2018) Systemic characterization of 3D-printed PCL/B-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity. J Mater Res 33(14):1948–1959PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Patricio T et al (2013) Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Proc CIRP 5:110–114CrossRefGoogle Scholar
  117. 117.
    Carpenter RA et al (2018) Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nat Biomed Eng 2:915PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Dhurjati R et al (2006) Extended-term culture of bone cells in a compartmentalized bioreactor. Tissue Eng 12(11):3045–3054PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Krishnan V et al (2014) In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J Cell Physiol 229(4):453–462PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Krishnan V, Vogler EA, Mastro AM (2015) Three-dimensional in vitro model to study osteobiology and osteopathology. J Cell Biochem 116(12):2715–2723PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alison B. Shupp
    • 1
  • Alexus D. Kolb
    • 1
  • Karen M. Bussard
    • 1
    Email author
  1. 1.Department of Cancer BiologySidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations