Advertisement

Phase-Amplitude Reduction of Limit Cycling Systems

  • Sho ShirasakaEmail author
  • Wataru Kurebayashi
  • Hiroya Nakao
Chapter
  • 196 Downloads
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 484)

Abstract

Optimization and control of collective dynamics in rhythmic systems have attracted increasing interest, and various methods have been developed on the basis of the phase reduction framework for limit cycle oscillators. The phase reduction relies on the notion of the isochron, which represents the set of system states that share the same asymptotic phase. However, the phase reduction does not take into account the amplitude degrees of freedom representing deviations of the system state from the limit cycle attractor, to which some rich and nontrivial transient behaviors of the oscillators are attributed. In this chapter, after a brief introduction of the phase reduction framework, a phase-amplitude reduction framework that is applicable to transient dynamics far from the limit cycle attractor is formulated. A rigorous theoretical background for defining the amplitudes is provided by the notion of the isostable, which naturally complements the isochron in the sense that both of them can be understood from a unified viewpoint of the spectral properties of the Koopman operator. The utility of the proposed phase-amplitude reduction framework is illustrated by evaluating the optimal injection timing of a weak control input that efficiently suppresses deviations of the system state from the limit cycle attractor.

Notes

Acknowledgements

S. S. acknowledges financial support from Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. 18H06478. W. K. acknowledges financial support from JSPS KAKENHI Grants No. 16K16125 No. 17H03279. H. N. acknowledges financial support from JSPS KAKENHI Grants No. 16K13847, No. 17H03279, No. 18K03471, No. 18H03287, and JST CREST Grant No. JPMJCR1913.

References

  1. 1.
    Abraham, I., De la Torre, G., Murphey, T.D.: Model-based control using Koopman operators. In: Proceedings of Robotics: Science and Systems (2017)Google Scholar
  2. 2.
    Acebrón, J.A., Bonilla, L.L., Pérez Vincente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77 (2005)CrossRefGoogle Scholar
  3. 3.
    Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6 (2016)Google Scholar
  5. 5.
    Brown, E., Moehlis, J., Holmes, P.: On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11 (2016)CrossRefGoogle Scholar
  7. 7.
    Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Castejón, O., Guillamon, A., Huguet, G.: Phase-Amplitude response functions for transient-state stimuli. J. Math. Neurosci. 3 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Colonius, F., Kliemann, W.: Dynamical Systems and Linear Algebra. American Mathematical Society, Providence (2014)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (1993)zbMATHCrossRefGoogle Scholar
  11. 11.
    Dasanayake, I., Li, J.-S.: Optimal design of minimum-power stimuli for phase models of neuron oscillators. Phys. Rev. E 83 (2011)Google Scholar
  12. 12.
    Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. USA 110 (2013)Google Scholar
  13. 13.
    Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Proc. Autom. 50 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Eldering, J., Kvalheim, M., Revzen, S.: Global linearization and fiber bundle structure of invariant manifolds. Nonlinearity 31 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ermentrout, G.B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8 (1996)CrossRefGoogle Scholar
  16. 16.
    Ermentrout, B., Park, T., Wilson, D.: Recent advances in coupled oscillator theory. Philos. Trans. R. Soc. A 377 (2019)CrossRefGoogle Scholar
  17. 17.
    Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)zbMATHCrossRefGoogle Scholar
  18. 18.
    Froyland, G., Hüls, T., Morriss, G.P., Watson, T.M.: Computing covariant Lyapunov vectors, Oseledets vectors, and dichotomy projectors: a comparative numerical study. Phys. D 247 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gaeta, G.: Poincaré Normal and Renormalized Forms. Acta Appl. Math. 70 (2002)Google Scholar
  20. 20.
    Goldobin, D.S., Teramae, J.-N., Nakao, H., Ermentrout, G.B.: Dynamics of limit-cycle oscillators subject to general noise. Phys. Rev. Lett. 105 (2010)Google Scholar
  21. 21.
    Goswami, D., Paley, D.A.: Global bilinearization and controllability of control-affine nonlinear systems: a Koopman spectral approach. In: 56th Annual Conference on Decision and Control pp. 6107–6112 (2017)Google Scholar
  22. 22.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)zbMATHCrossRefGoogle Scholar
  23. 23.
    Hale, J.K.: Ordinary Differential Equations. Dover Publications, New York (2009)Google Scholar
  24. 24.
    Harada, T., Tanaka, H.-A., Hankins, M.J., Kiss, I.Z.: Optimal waveform for the entrainment of a weakly forced oscillator. Phys. Rev. Lett. 105 (2010)Google Scholar
  25. 25.
    Hitczenko, P., Medvedev, G.S.: The Poincaré map of randomly perturbed periodic motion. J. Nonlinear Sci. 23 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)zbMATHCrossRefGoogle Scholar
  27. 27.
    Hoppensteadt, F.C.: Analysis and Simulation of Chaotic Systems. Springer, New York (2000)zbMATHGoogle Scholar
  28. 28.
    Hüls, T.: Computing stable hierarchies of fiber bundles. Discret. Contin. Dyn. Syst. Ser. B 22 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control (2017). arXiv:1707.01146
  30. 30.
    Kawamura, Y., Nakao, H.: Collective phase description of oscillatory convection. Chaos 23D (2013)Google Scholar
  31. 31.
    Kawamura, Y., Shirasaka, S., Yanagita, T., Nakao, H.: Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction-diffusion systems. Phys. Rev. E 96 (2017)Google Scholar
  32. 32.
    Keener, J.P.: Principles of Applied Mathematics. Westview Press, Boulder (2001)Google Scholar
  33. 33.
    Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Springer, New York (2009)zbMATHCrossRefGoogle Scholar
  34. 34.
    Kiss, I.Z., Rusin, C.G., Kori, H., Hudson, J.L.: Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Korda, M., Mezic, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Kotani, K., Yamaguchi, I., Ogawa, Y., Jimbo, Y., Nakao, H., Ermentrout, G.B.: Adjoint method provides phase response functions for delay-induced oscillations. Phys. Rev. Lett. 109 (2012)Google Scholar
  38. 38.
    Kowalski, K., Steeb, W.H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Singapore (2011)zbMATHGoogle Scholar
  39. 39.
    Kuptsov, P.V., Parlitz, U.: Theory and computation of covariant Lyapunov vectors. J. Nonlinear Sci. 22 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Arakaki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39. Springer, New York (1975)Google Scholar
  41. 41.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)zbMATHCrossRefGoogle Scholar
  42. 42.
    Kvalheim, M.D., Revzen, S.: Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits (2019). arXiv:1911.11996
  43. 43.
    Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Phys. D 242 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Li, Q., Dietrich, F., Bollt, E.M., Kevrekidis, I.G.: Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9 (2018)Google Scholar
  46. 46.
    Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory. Gostexizdat, Moskow (1956). (in Russian)Google Scholar
  47. 47.
    Mardt, A., Pasquali, L., Wu, H., Noé, F.: VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9 (2018)Google Scholar
  48. 48.
    Matthews, P.C., Mirollo, R.E., Strogatz, S.H.: Dynamics of a large system of coupled nonlinear oscillators. Phys. D 52 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Mauroy, A., Mezić, I.: On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos 22 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Mauroy, A., Mezić, I.: Global computation of phase-amplitude reduction for limit-cycle dynamics. Chaos 28 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Mauroy, A., Mezić, I., Moehlis, J.: Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D 261 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Mauroy, A., Rhoads, B., Moehlis, J., Mezic, I.: Global isochrons and phase sensitivity of bursting neurons. SIAM J. Appl. Dyn. Syst. 13 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Mauroy, A.: Converging to and escaping from the global equilibrium: isostables and optimal control. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 5888–5893 (2014)Google Scholar
  54. 54.
    Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Mezić, I.: Spectum of the Koopman Operator, Spectral Expansions in Functional Spaces, and State-Space Geometry. J. Nonlinear Sci. (2019)Google Scholar
  56. 56.
    Mikhailov, A.S., Ertl, G.: Chemical Complexity. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  57. 57.
    Moehlis, J., Shea-Brown, E., Rabitz, H.: Optimal inputs for phase models of spiking neurons. J. Comput. Nonlinear Dyn. 1 (2006)CrossRefGoogle Scholar
  58. 58.
    Mohr, R., Mezić, I.: Construction of eigenfunctions for scalar-type operators via Laplace averages with connections to the Koopman operator (2014). arXiv:1403.6559
  59. 59.
    Monga, B., Wilson, D., Matchen, T., Moehlis, J.: Phase reduction and phase-based optimal control for biological systems: a tutorial. Biol. Cybern. (2018)Google Scholar
  60. 60.
    Nakao, H.: Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57 (2016)CrossRefGoogle Scholar
  61. 61.
    Nakao, H., Mikhailov, A.S.: Diffusion-induced instability and chaos in random oscillator networks. Phys. Rev. E 79 (2009)Google Scholar
  62. 62.
    Nakao, H., Yanagita, T., Kawamura, Y.: Phase reduction approach to synchronization of spatiotemporal rhythms in reactiondiffusion systems. Phys. Rev. X 4 (2014)Google Scholar
  63. 63.
    Novičenko, V., Pyragas, K.: Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems. Phys. D 241 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Otto, S.E., Rowley, C.W.: Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl. Dyn. Syst. 18 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Park, Y., Shaw, K.M., Chiel, H.J., Thomas, P.J.: The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems. Eur. J. Appl. Math. 29 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  67. 67.
    Pikovsky, A.: Maximizing coherence of oscillations by external locking. Phys. Rev. Lett. 115 (2015)Google Scholar
  68. 68.
    Pikovsky, A., Politi, A.: Lyapunov Exponents: A Tool to Explore Complex Dynamics. Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
  69. 69.
    Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Rodrigues, F.A., Peron, T.K.DM., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Rowley, C.W., Mezić, I., Bagheri, S., Schlatter. P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)zbMATHGoogle Scholar
  73. 73.
    Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Schultheiss, N.W., Prinz, A.A., Butera, R.J. (eds.): Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis. Springer, New York (2011)Google Scholar
  75. 75.
    Shilnilov, L.P., Shilnilov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. Part I. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  76. 76.
    Shirasaka, S., Watanabe, N., Kawamura, Y., Nakao, H.: Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling. Phys. Rev. E 96 (2017)Google Scholar
  77. 77.
    Shirasaka, S., Kurebayashi, W., Nakao, H.: Phase reduction theory for hybrid nonlinear oscillators. Phys. Rev. E 95 (2017)Google Scholar
  78. 78.
    Shirasaka, S., Kurebayashi, W., Nakao, H.: Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems. Chaos 27 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Skardal, P.S., Taylor, D., Sun, J.: Optimal synchronization of complex networks. Phys. Rev. Lett. 113 (2014)Google Scholar
  80. 80.
    Skardal, P.S., Taylor, D., Sun, J.: Optimal synchronization of directed complex networks. Chaos 26 (2016)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Sootla, A., Mauroy, A., Ernst, D.: Optimal control formulation of pulse-based control using Koopman operator. Automatica 91 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Stankovski, T., Pereira, T., McClintock, P.V.E., Stefanovska, A.: Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89 (2017)Google Scholar
  83. 83.
    Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E.: Crowd synchrony on the Millennium bridge. Nature 438 (2005)CrossRefGoogle Scholar
  85. 85.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview press, Boulder (2014)zbMATHGoogle Scholar
  86. 86.
    Taira, K., Nakao, H.: Phase-response analysis of synchronization for periodic flows. J. Fluid. Mech. 846 (2018)Google Scholar
  87. 87.
    Takeishi, N., Kawahara, Y., Yairi, Y.: Learning koopman invariant subspaces for dynamic mode decomposition. In: Advances in Neural Information Processing Systems, pp. 1130–1140 (2017)Google Scholar
  88. 88.
    Tass, P.A.: Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis. Springer, Berlin (2007)zbMATHGoogle Scholar
  89. 89.
    Tinsley, M.R., Nkomo, S., Showalter, K.: Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8 (2012)CrossRefGoogle Scholar
  90. 90.
    Traversa, F.L., Bonnin, M., Corinto, F., Bonani, F.: Noise in oscillators: a review of state space decomposition approaches. J. Comput. Electron. 14 (2015)CrossRefGoogle Scholar
  91. 91.
    Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2014)Google Scholar
  92. 92.
    Watanabe, N., Kato, Y., Shirasaka, S., Nakao, H.: Optimization of linear and nonlinear interaction schemes for stable synchronization of weakly coupled limit-cycle oscillators. Phys. Rev. E 100 (2019)Google Scholar
  93. 93.
    Wedgwood, K.C.A., Lin, K.K., Thul, R., Coombes, S.: Phase-amplitude descriptions of neural oscillator models. J. Math. Neurosci. 3 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)zbMATHGoogle Scholar
  95. 95.
    Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A DataDriven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A kernel-based method for data-driven koopman spectral analysis. J. Comput. Dyn. 2015 (2015)Google Scholar
  97. 97.
    Wilson, D.: Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers. Phys. Rev. E 99 (2019)Google Scholar
  98. 98.
    Wilson, D., Ermentrout, G.B.: Greater accuracy and broadened applicability of phase reduction using isostable coordinates. J. Math. Biol. 76 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Wilson, D., Ermentrout, B.: Phase Models Beyond Weak Coupling. Phys. Rev. Lett. 123 (2019)Google Scholar
  100. 100.
    Wilson, D., Holt, A.B., Netoff, T.I., Moehlis, J.: Optimal entrainment of heterogeneous noisy neurons. Front. Neurosci. 29 (2015)Google Scholar
  101. 101.
    Wilson, D., Moehlis, J.: Extending phase reduction to excitable media: theory and applications. SIAM Rev. 57 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Wilson, D., Moehlis, J.: Isostable reduction with applications to time-dependent partial differential equations. Phys. Rev. E 94 (2016)Google Scholar
  103. 103.
    Wilson, D., Moehlis, J.: Isostable reduction of periodic orbits. Phys. Rev. E 94 (2016)Google Scholar
  104. 104.
    Wilson, D., Moehlis, J.: Spatiotemporal control to eliminate cardiac alternans using isostable reduction. Phys. D 342 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Winfree, A.T.: The Geometry of Biological Time. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  106. 106.
    Yeung, E., Kundu, S., Hodas, N.: Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems. In: 2019 American Control Conference, pp. 4832–4839 (2019)Google Scholar
  107. 107.
    Yoshimura, K., Arai, K.: Phase reduction of stochastic limit cycle oscillators. Phys. Rev. Lett. 101 (2008)Google Scholar
  108. 108.
    Zlotnik, A., Chen, Y., Kiss, I.Z., Tanaka, H.-A., Li, J.-S.: Optimal waveform for fast entrainment of weakly forced nonlinear oscillators. Phys. Rev. Lett. 111 (2013)Google Scholar
  109. 109.
    Zlotnik, A., Nagao, R., Kiss, I.Z., Li, J.-S.: Phase-selective entrainment of nonlinear oscillator ensembles. Nat. Commun. 7 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sho Shirasaka
    • 1
    Email author
  • Wataru Kurebayashi
    • 2
  • Hiroya Nakao
    • 3
  1. 1.Department of Information and Physical SciencesOsaka UniversitySuitaJapan
  2. 2.Center for Data Science Education and ResearchShiga UniversityHikoneJapan
  3. 3.Department of Systems and Control EngineeringTokyo Institute of TechnologyMeguroJapan

Personalised recommendations