Advertisement

Free Energy Calculation Methods Used in Computer Simulations

  • Hiqmet Kamberaj
Chapter
  • 77 Downloads
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

In this chapter, we will present the most advanced methods used in the calculation of free energy from the computer simulations. First, in this chapter, we will discuss the methods employed in molecular dynamics simulations using explicit solvent models, such as the thermodynamic free energy perturbation method, thermodynamic integration method, and slow growth method. Then, the implicit solvation models will be discussed using either Poisson-Boltzmann or Generalized Born approximation for treating the electrostatic interactions.

References

  1. Alfrey, T. Jr., Berg, P.W., Morawetz, H.: The counter ion distribution in solutions of rod-shaped polyelectrolytes. J. Polym. Sci. 7, 543–547 (1951)CrossRefADSGoogle Scholar
  2. Ashbaugh, H.S., Kaler, E.W., Paulaitis, M.E.: A universal surface area correlation for molecular hydrophobic phenomena. J. Am. Chem. Soc. 121, 9243–9244 (1999)CrossRefGoogle Scholar
  3. Born, M.: Volumen und Hydratationswärme der ionen. Z. Phys. 1, 45–48 (1920)CrossRefADSGoogle Scholar
  4. Bren, M., Florián, J., Mavri, J., Bren, U.: Do all pieces make a whole? Thiele cumulants and the free energy decomposition. Theor. Chem. Acc. 117, 535–540 (2007)Google Scholar
  5. Bren, U., Martínek, V., Florián, J.: Decomposition of the solvation free energis of Deoxyribonucleoside Triphosphates using the free energy peturbation method. J. Phys. Chem. B 110, 12782–12788 (2006)CrossRefGoogle Scholar
  6. Chapman, D.L.: A contribution to the theory of electrocapillarity. Phil. Mag. 25, 475–481 (1913)CrossRefzbMATHGoogle Scholar
  7. Chen, J., Brooks III, C.L.: Implicit modelling of non polar solvation for simulating protein folding and conformational transitions. Phys. Chem. Chem. Phys. 10, 471–481 (2008)CrossRefGoogle Scholar
  8. Chothia, C.: Hydrophobic binding and accessible surface area in proteins. Nature 248, 338–339 (1974)CrossRefADSGoogle Scholar
  9. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709 (1983a)CrossRefADSGoogle Scholar
  10. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558 (1983b)CrossRefGoogle Scholar
  11. Connolly, M.L.: Molecular surface triangulation. J. Appl. Cryst. 18, 499 (1985)CrossRefGoogle Scholar
  12. Cramer, C.J., Truhlar, D.G.: Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem. Rev. 99(8), 2161–2200 (1999)CrossRefGoogle Scholar
  13. Debye, P., Hückel, E.: Zur theorie der elektrolyte. Phys. Zeitschr. 24, 185–206 (1923)zbMATHGoogle Scholar
  14. Derjaguin, B., Landau, L.: A theory of the stability of strongly charged lyophobic sold and the coalescence of strongly charged particles in electrolytic solution. Acta Phys. Chim. USSR 14, 633–662 (1941)Google Scholar
  15. Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319, 199–203 (1986)CrossRefADSGoogle Scholar
  16. Fogolari, F., Briggs, J.M.: On variational approach to the Poisson-Boltzmann free energies. Chem. Phys. Lett. 281, 135–139 (1997)CrossRefADSGoogle Scholar
  17. Fogolari, F., Zuccato, P., Esposito, G., Viglino, P.: Biomolecular electrostatics with the linearised Poisson-Boltzmann equation. Biophys. J. 76, 1–16 (1999)CrossRefGoogle Scholar
  18. Fogolari, F., Brigo, A., Molinari, H.: The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 15, 377–392 (2002)CrossRefGoogle Scholar
  19. Fowler, R.H., Guggenheimer, E.A.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1939)Google Scholar
  20. Frenkel, D., Smit, B.: Understanding Molecular Simulation from Algorithms to Applications. Academic, San Diego (2001). ISBN 9780122673511Google Scholar
  21. Gallicchio, E., Levy, R.M.: AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25, 479–499 (2004)CrossRefGoogle Scholar
  22. Gilson, M.K., Honig, B.: The dielectric constant of a folded protein. Biopolymers 25, 2097–2119 (1986)CrossRefGoogle Scholar
  23. Gilson, M.K., Honig, B.H.: Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4, 7–18 (1988)CrossRefGoogle Scholar
  24. Gohlke, H., Kiel, C., Case, D.A.: Insights into protein-protein binding by binding free energy calculation and free energy decomposition for Ras-Raf and Ras-RaIGDS complexes. J. Mol. Biol. 330(4), 891–913 (2003)CrossRefGoogle Scholar
  25. Gouy, M.: Sur la constitution de la charge électrique a la surface d’un électrolyte. J. Phys. 9, 457–468 (1910)zbMATHGoogle Scholar
  26. Gronwall, T.H., La Mer, V.K., Sandved, K.: Über den einfluss der sogenannten höheren glieder in der Debye-Hückelschen theorie der lösungen starker elektrolyte. Phys. Zeitschr. 29, 358–393 (1928)zbMATHGoogle Scholar
  27. Grycuk, T.: Deficiency of the Coulomb-field approximation in the generalised Born model: an improved formula for form radii evaluation. J. Chem. Phys. 119, 4817–4826 (2003)CrossRefADSGoogle Scholar
  28. Hawkins, G.D., Cramer, C.J., Truhlar, D.G.: Pairwise solute descreening of solute charges from a dielectric medium. Chem. Phys. Lett. 246, 122–129 (1995)CrossRefADSGoogle Scholar
  29. Hawkins, G.D., Cramer, C.J., Truhlar, D.G.: Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 100, 19824–19839 (1996)CrossRefGoogle Scholar
  30. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)zbMATHGoogle Scholar
  31. Katchalski, A.: Polyelectrolytes. Pure Appl. Chem. 26, 327–371 (1971)CrossRefGoogle Scholar
  32. Kirkwood, J.G.: On the theory of strong electrolyte solutions. J. Chem. Phys. 2, 767–781 (1934a)CrossRefADSzbMATHGoogle Scholar
  33. Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special applications to zwitterions. J. Chem. Phys. 7, 351–361 (1934b)CrossRefADSzbMATHGoogle Scholar
  34. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S.H., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E.: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts Chem. Res. 33(12), 889–897 (2000)CrossRefGoogle Scholar
  35. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35, 133–152 (1999)CrossRefGoogle Scholar
  36. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971)CrossRefGoogle Scholar
  37. Lee, M.S., Salsbury, F.R. Jr., Brooks III, C.L.: Novel generalized Born methods. J. Chem. Phys. 116, 10606–10614 (2002)CrossRefADSGoogle Scholar
  38. Levy, R.M., Zhang, L.Y., Gallicchio, E., Felts, A.K.: On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. J. Am. Chem. Soc. 125, 9523–9530 (2003)CrossRefGoogle Scholar
  39. Lifson, S., Katchalski, A.: The electrostatic free energy of polyelectrolyte solutions. J. Polym. Sci. 13, 43–55 (1954)CrossRefADSGoogle Scholar
  40. Linderstrom-Lang, K.: On the ionisation of proteins. Compt. Rend. Trav. Lab. Carlsberg 15, 1–29 (1924)Google Scholar
  41. Luo, R., Moult, J., Gilson, M.K.: Dielectric screening treatment of electrostatic solvation. J. Phys. Chem. B 101, 11216–11236 (1997)Google Scholar
  42. Majeux, N., Scarsi, M., Apostolakis, J., Ehrhardt, C., Caflisch, A.: Exhaustive docking of molecular fragments with electrostatic solvation. Proteins 37, 88–105 (1999)CrossRefGoogle Scholar
  43. Manning, G.S.: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978)CrossRefGoogle Scholar
  44. Marcus, R.A.: Calculation of thermodynamic properties of polyelectrolytes. J. Chem. Phys. 23, 1057–1068 (1955)CrossRefADSGoogle Scholar
  45. Massova, I., Kollman, P.A.: Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Persp. Drug Disc. Des. 18, 113–135 (2000)CrossRefGoogle Scholar
  46. Misra, V.K., Sharp, K.A., Friedman, R.A., Honig, B.: Salt effects on ligand-DNA binding. Minor groove antibiotics. J. Mol. Biol. 238, 245–263 (1994)CrossRefGoogle Scholar
  47. Nemethy, G., Scheraga, H.A.: The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773–1789 (1962)Google Scholar
  48. Nozaki, Y., Tanford, C.: Examination of titration behaviour. Meth. Enzymol. 11, 715–734 (1967)CrossRefGoogle Scholar
  49. Onsager, L.: Theories of concentrated electrolytes. Chem. Rev. 13, 73–89 (1933)CrossRefGoogle Scholar
  50. Ooi, T., Oobatake, M., Nemethy, G., Scheraga, H.A.: Accessible surface area as a measure of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. USA 84, 3086–3090 (1987)CrossRefADSGoogle Scholar
  51. Pearlman, D.A., Kollman, P.A.: A new method for carrying out free energy perturbation calculations: dynamically modified windows. J. Chem. Phys. 90, 2460–2470 (1989)CrossRefADSGoogle Scholar
  52. Petitjean, M.: On the analysis calculation of van der Waals surfaces and volumes: some numerical aspects. J. Comput. Chem. 15, 507–523 (1994)CrossRefMathSciNetGoogle Scholar
  53. Pierotti, R.A.: A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76, 717–726 (1976)CrossRefGoogle Scholar
  54. Raschke, T.M., Tsai, J., Levitt, M.: Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water. Proc. Natl. Acad. Sci. USA 98, 5965–5969 (2001)CrossRefADSGoogle Scholar
  55. Reiner, E.S., Radke, C.J.: Variational approach to the electrostatic free energy in charged colloidal suspensions: general theory for open systems. J. Chem. Soc. Faraday Trans. 86, 3901–3912 (1990)CrossRefGoogle Scholar
  56. Richards, F.M.: Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977)CrossRefGoogle Scholar
  57. Richards, F.M.: Optical matching of physical models and electron density maps: early developments. Methods Enzymol. 115, 145–154 (1985)CrossRefGoogle Scholar
  58. Roux, B., Simonson, T.: The implicit solvent models. Biophys. Chem. 78, 1–20 (1999)CrossRefGoogle Scholar
  59. Schaefer, M., Froemmel, C.: A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution. J. Mol. Biol. 216, 1045–1066 (1990)CrossRefGoogle Scholar
  60. Schutz, C.N., Warshel, A.: What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins Struct. Funct. Genet. 44, 400–417 (2001)CrossRefGoogle Scholar
  61. Sharp, K.A., Honig, B.: Calculating total electrostatic energies with non-linear Poisson-Boltzmann equation. J. Phys. Chem. 94, 7684–7692 (1990)CrossRefGoogle Scholar
  62. Sharp, K.A., Nicholis, A., Fine, R.F., Honig, B.: Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106–109 (1991)CrossRefADSGoogle Scholar
  63. Simonson, T.: Dielectric constant of cytochrome c from simulations in water droplet including all electrostatic interactions. J. Am. Chem. Soc. 120, 4875–4876 (1998)CrossRefGoogle Scholar
  64. Simonson, T.: Macromolecular electrostatics: continuum models and their growing pains. Curr. Opin. Struct. Biol. 11, 243–252 (2001)CrossRefGoogle Scholar
  65. Simonson, T., Brunger, A.T.: Solvation free energies estimated from macroscopic continuum theory: an accuracy assessment. J. Phys. Chem. 98, 4683–4694 (1994)CrossRefGoogle Scholar
  66. Sitkoff, D., Sharp, K.A., Honig, B.: Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988 (1994)CrossRefGoogle Scholar
  67. Srinivasan, J., Trevathan, M.W., Beroza, P., Case, D.A.: Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects. Theor. Chem. Acc. 101, 426–434 (1999)CrossRefGoogle Scholar
  68. Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T.: Semi-analytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)CrossRefGoogle Scholar
  69. Tanford, C.: Interfacial free energy and the hydrophobic effect. Proc. Natl. Acad. Sci. USA 76, 4175–4176 (1979)CrossRefADSGoogle Scholar
  70. Tjong, H., Zhou, H.X.: GBr6: a parametrization-free, accurate, analytical generalised Born method. J. Phys. Chem. B 111, 3055–3061 (2007a)CrossRefGoogle Scholar
  71. Tjong, H., Zhou, H.X.: GBr6NL: a generalised Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation. J. Chem. Phys. 126, 195102 (2007b)CrossRefADSGoogle Scholar
  72. Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)Google Scholar
  73. Vorobjev, Y.N., Hermans, J.: SIMS: computation of a smooth invariant molecular surface. Biophys. J. 73, 722 (1997)CrossRefGoogle Scholar
  74. Wang, W., Reyes, O.D.C., Kollman, P.A.: Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Bioph. Biom. 30, 211–243 (2001)CrossRefGoogle Scholar
  75. Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39, 2808–2812 (1963)CrossRefADSGoogle Scholar
  76. Zacharias, M.: Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci. 12, 1271 (2003)CrossRefGoogle Scholar
  77. Zhou, H.X.: Macromolecular electrostatic energy within the nonlinear Poisson-Boltzmann equation. J. Chem. Phys. 100, 3152–3162 (1994)CrossRefADSGoogle Scholar
  78. Zwanzig, R.W.: High-temperature equation of state by a perturbation method. 1. Nonpolar gases. J. Chem. Phys. 22, 1420–1426 (1954)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hiqmet Kamberaj
    • 1
    • 2
  1. 1.Computer EngineeringInternational Balkan UniversitySkopjeNorth Macedonia
  2. 2.Advanced Computing Research CenterUniversity of New York TiranaTiranaAlbania

Personalised recommendations