A Review of Robot Rescue Simulation Platforms for Robotics Education

  • Josie HughesEmail author
  • Masaru Shimizu
  • Arnoud Visser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)


This review explores a natural learning curve which gives an appropriate RoboCup Rescue challenge at the right age. Children who got involved in the age group 14+ should continue their learning experience until they reach graduate level. To reduce the cost of such a learning experience, simulation is an attractive option in a large part of the world. The realism of the simulations and challenges should increase step-by-step, which are supported by more powerful but also more complex interfaces at each level/age-group. The result is a natural learning curve which allows for life-long learning. In this paper, we detail the requirements for such a platform and review a number of different simulation platforms and accompanying interfaces focusing on suitability for use for education rescue robotics. Resulting from this review of simulation platforms, a case-study of an example ‘game field’ rescue simulation platform suitable for students at different points along the learning curve.


Educational kit Search and rescue Simulation 



This work is funded by RoboCup Federation Support 2019. We like to thank Fatemeh Pahlevan Aghababa, Amirreza Kabiri and Francesco Amigoni for their suggestions.


  1. 1.
    Agüero, C.E., et al.: Inside the virtual robotics challenge: simulating real-time robotic disaster response. IEEE Trans. Autom. Sci. Eng. 12(2), 494–506 (2015). Scholar
  2. 2.
    Akin, H.L., Ito, N., Jacoff, A., Kleiner, A., Pellenz, J., Visser, A.: Robocup rescue robot and simulation leagues. AI Mag. 34(1), 78–78 (2013). Scholar
  3. 3.
    Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M., Scrapper, C.: Usarsim: a validated simulator for research in robotics and automation. In: Workshop on Robot Simulators: Available Software, Scientific Applications, and Future Trends at IEEE/RSJ (2008)Google Scholar
  4. 4.
    Blank, D., Meeden, L., Kumar, D.: Python robotics: an environment for exploring robotics beyond legos. In: Proceedings of the 34th SIGCSE technical symposium on Computer Science education (2003). Scholar
  5. 5.
    Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Rob. Autom. 2(1), 14–23 (1986). Scholar
  6. 6.
    Crick, C., Jay, G., Osentoski, S., Pitzer, B., Jenkins, O.C.: Rosbridge: ROS for Non-ROS users. In: Christensen, H.I., Khatib, O. (eds.) Robotics Research. STAR, vol. 100, pp. 493–504. Springer, Cham (2017). Scholar
  7. 7.
    Eguchi, A.: RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Rob. Auton. Syst. 75, 692–699 (2016). Scholar
  8. 8.
    Eguchi, A., Shen, J.: Student learning experience through cospace educational robotics: 3d simulation educational robotics tool. In: Cases on 3D Technology Application and Integration in Education, pp. 93–127. IGI Global (2013). Scholar
  9. 9.
    Guyot, L., Heiniger, N., Michel, O., Rohrer, F.: Teaching robotics with an open curriculum based on the e-puck robot, simulations and competitions. In: Proceedings of the 2nd International Conference on Robotics in Education, Vienna, Austria (2011).
  10. 10.
    Hambuchen, K.A., et al.: Nasa’s space robotics challenge: advancing robotics for future exploration missions. In: AIAA SPACE and Astronautics Forum and Exposition (2017).
  11. 11.
    Hughes, J.: Robotic rescue simulation for computing teaching in the UK: a case study. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 1051–1055. IEEE (2016).
  12. 12.
    Kaminka, G.A., Veloso, M.M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: a flexible test bed for multiagent team research. Commun. ACM 45(1), 43–45 (2002). Scholar
  13. 13.
    Kitano, H., Tadokoro, S.: Robocup rescue: a grand challenge for multiagent and intelligent systems. AI Mag. 22(1), 39–39 (2001). Scholar
  14. 14.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 3, pp. 2149–2154. IEEE (2004).
  15. 15.
    Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U., von Stryk, O.: Hector open source modules for autonomous mapping and navigation with rescue robots. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 624–631. Springer, Heidelberg (2014). Scholar
  16. 16.
    Kootbally, Z., Balakirsky, S., Visser, A.: Enabling codesharing in rescue simulation with USARSim/ROS. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 592–599. Springer, Heidelberg (2014). Scholar
  17. 17.
    de Meneses, Y.L., Michel, O.: Vision sensors on the webots simulator. In: Heudin, J.-C. (ed.) VW 1998. LNCS (LNAI), vol. 1434, pp. 264–273. Springer, Heidelberg (1998). Scholar
  18. 18.
    Michel, O.: Webots: symbiosis between virtual and real mobile robots. In: Heudin, J.-C. (ed.) VW 1998. LNCS (LNAI), vol. 1434, pp. 254–263. Springer, Heidelberg (1998). Scholar
  19. 19.
    Michieletto, S., Ghidoni, S., Pagello, E., Moro, M., Menegatti, E.: Why teachrobotics using ros? J. Autom. Mob. Rob. Intell. Syst. 8 (2014). Scholar
  20. 20.
    Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009).
  21. 21.
    Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., Paques, A.: Pythonrobotics: a python code collection of robotics algorithms. arXiv:1808.10703 (2018)
  22. 22.
    Sammut, C., Sheh, R., Haber, A., Wicaksono, H.: The robot engineer. In: ILP (Late Breaking Papers), pp. 101–106 (2015).
  23. 23.
    Sheh, R., Schwertfeger, S., Visser, A.: 16 years of robocup rescue. KI - Künstliche Intell. 30(3), 267–277 (2016). Scholar
  24. 24.
    Shimizu, M., Koenig, N., Visser, A., Takahashi, T.: A realistic robocup rescue simulation based on gazebo. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 331–338. Springer, Cham (2015). Scholar
  25. 25.
    Takaya, K., Asai, T., Kroumov, V., Smarandache, F.: Simulation environment for mobile robots testing using ros and gazebo. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), pp. 96–101 (Oct 2016)Google Scholar
  26. 26.
    Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Siciliano, B., Khatib, O. (eds.) Springer handbook of robotics, pp. 871–889. Springer, Heidelberg (2008). Scholar
  27. 27.
    Toh, L.P.E., Causo, A., Tzuo, P.W., Chen, I., Yeo, S.H., et al.: A review on the use of robots in education and young children. Educ. Technol. Soc. 19(2), 148–163 (2016). Scholar
  28. 28.
    Visser, A.: A guide to the RoboCup Virtual Rescue worlds. Technical report, IRL-UVA-16-01 - University of Amsterdam (2016).
  29. 29.
    Williams, A., Sebastian, B., Ben-Tzvi, P.: Review and analysis of search,extraction, evacuation, and medical field treatment robots. J. Intell. Rob. Syst., 1–18 (2019). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Downing CollegeCambridge UniversityCambridgeUK
  2. 2.School of EngineeringChukyo UniversityNagoyaJapan
  3. 3.Intelligent Robotics LabUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations