Advertisement

UT Austin Villa: RoboCup 2019 3D Simulation League Competition and Technical Challenge Champions

  • Patrick MacAlpineEmail author
  • Faraz Torabi
  • Brahma Pavse
  • Peter Stone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

The UT Austin Villa team, from the University of Texas at Austin, won the 2019 RoboCup 3D Simulation League, and in doing so finished with an overall record of 21 wins, 1 tie, and 1 loss. During the course of the competition the team scored 112 goals while conceding only 5. Additionally the team won the RoboCup 3D Simulation League technical challenge by accumulating the most points across two league challenges: fewest self-collisions challenge and free challenge. This paper describes the changes and improvements made to the team between 2018 and 2019 that allowed it to win both the main competition and technical challenge.

Notes

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), ONR (N00014-18-2243), FLI (RFP2-000), ARL, DARPA, Intel, Raytheon, and Lockheed Martin. Peter Stone serves on the Board of Directors of Cogitai, Inc. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research. Patrick MacAlpine is an employee of Microsoft and supported by Microsoft Research.

References

  1. 1.
    MacAlpine, P., et al.: UT Austin Villa 2011: a champion agent in the RoboCup 3D soccer simulation competition. In: Proceedings of 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012) (2012)Google Scholar
  2. 2.
    MacAlpine, P., Collins, N., Lopez-Mobilia, A., Stone, P.: UT Austin Villa: RoboCup 2012 3D simulation league champion. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 77–88. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39250-4_8CrossRefGoogle Scholar
  3. 3.
    MacAlpine, P., Depinet, M., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2014 3D simulation league competition and technical challenge champions. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 33–46. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_3CrossRefGoogle Scholar
  4. 4.
    MacAlpine, P., Hanna, J., Liang, J., Stone, P.: UT Austin Villa: RoboCup 2015 3D simulation league competition and technical challenges champions. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 118–131. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-29339-4_10CrossRefGoogle Scholar
  5. 5.
    MacAlpine, P., Stone, P.: UT Austin Villa: RoboCup 2016 3D simulation league competition and technical challenges champions. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 515–528. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_43CrossRefGoogle Scholar
  6. 6.
    MacAlpine, P., Stone, P.: UT Austin Villa: RoboCup 2017 3D simulation league competition and technical challenges champions. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 473–485. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00308-1_39CrossRefGoogle Scholar
  7. 7.
    MacAlpine, P., Torabi, F., Pavse, B., Sigmon, J., Stone, P.: UT Austin Villa: RoboCup 2018 3D simulation league champions. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 462–475. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-27544-0_38CrossRefGoogle Scholar
  8. 8.
    MacAlpine, P., et al.: UT Austin Villa 2011 3D simulation team report. Technical report AI11-10, The University of Texas at Austin, Department of Computer Science, AI Laboratory (2011)Google Scholar
  9. 9.
    Obst, O., Rollmann, M.: Spark – a generic simulator for physical multi-agent simulations. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 243–257. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30082-3_18CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Vatankhah, H.: SimSpark: an open source robot simulator developed by the RoboCup community. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 632–639. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_59CrossRefGoogle Scholar
  11. 11.
    MacAlpine, P., Price, E., Stone, P.: SCRAM: scalable collision-avoiding role assignment with minimal-makespan for formational positioning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15) (2015)Google Scholar
  12. 12.
    MacAlpine, P., Stone, P.: Prioritized role assignment for marking. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 306–318. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_25CrossRefGoogle Scholar
  13. 13.
    MacAlpine, P., Stone, P.: Overlapping layered learning. Artif. Intell. 254, 21–43 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hansen, N.: The CMA Evolution Strategy: A Tutorial (2009). http://www.lri.fr/~hansen/cmatutorial.pdf
  15. 15.
    Pavse, B.S., Torabi, F., Hanna, J., Warnell, G., Stone, P.: RIDM: reinforced inverse dynamics modeling for learning from a single observed demonstration. In: Imitation, Intent, and Interaction (I3) Workshop at ICML 2019 (2019)Google Scholar
  16. 16.
    Abreu, M., Lau, N., Sousa, A., Reis, L.P.: Learning low level skills from scratch for humanoid robot soccer using deep reinforcement learning. In: 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 1–8. IEEE (2019)Google Scholar
  17. 17.
    Abreu, M., Reis, L.P., Lau, N.: Learning to run faster in a humanoid robot soccer environment through reinforcement learning. In: Chalup, S., et al. (eds.) RoboCup 2019: Robot World Cup XXIII. LNAI, pp. 3–15. Springer (2019)Google Scholar
  18. 18.
    Simões, M., Nogueira, T.: Towards setplays learning in a multiagent robotic soccer team. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp. 277–282. IEEE (2018)Google Scholar
  19. 19.
    MacAlpine, P., Stone, P.: UT Austin Villa RoboCup 3D simulation base code release. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 135–143. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patrick MacAlpine
    • 1
    Email author
  • Faraz Torabi
    • 2
  • Brahma Pavse
    • 2
  • Peter Stone
    • 2
  1. 1.Microsoft ResearchRedmondUSA
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations