The Cerebellum: A Therapeutic Target in Treating Speech and Language Disorders

  • Maria LeggioEmail author
  • Giusy Olivito
  • Michela Lupo
  • Silvia Clausi
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Approaches to thinking about the cerebellum have historically been overshadowed by the view that it is a structure mainly involved in the regulation and coordination of motor control. During the past decades, neuroanatomical, neuroimaging, and clinical studies have substantially modified this traditional view and provided new insights and a body of evidence for cerebellar involvement in a wide range of nonmotor processes, such as cognitive, affective, and social processes. Within the broad range of functions in which the cerebellum is involved, several clinical studies have shown the occurrence of different types of speech and language impairments subsequent to cerebellar damage. In the first part of the present chapter, we briefly summarize the motor and nonmotor language impairments that have been reported after cerebellar damage in adults and the associated cerebello-cerebral network alterations. Starting from these clinical and neuroimaging data about the “linguistic cerebellum,” in the second part of the chapter, we provide an overview of the studies that used noninvasive transcranial neuromodulation techniques to further investigate the cerebellar role in speech and language domains. Furthermore, we show the current state of the art and translational potential of the use of cerebellar neuromodulation to improve speech and language functions after cortical and subcortical damage.


Cerebellum Speech Language Neuromodulation treatment TMS tDCS MRI 



Autism spectrum disorders


Blood oxygen level dependent


Cerebellar brain inhibition


Continuous theta-burst stimulation


Diffusion tensor imaging


Functional connectivity


Gray matter


Intermittent theta-burst stimulation


Motor-evoked potentials


Paced auditory serial addition task


Paced auditory serial subtraction task


Progressive supranuclear palsy


Resting-state functional magnetic resonance imaging


Repetitive transcranial magnetic stimulation


Spinocerebellar ataxia


Theta-burst stimulation


Transcranial direct current stimulation


Transcranial magnetic stimulation


Verbal working memory


  1. Alario, F. X. (2006). The role of the supplementary motor area (SMA) in word production. Brain Research, 1076(1), 129–143.PubMedCrossRefGoogle Scholar
  2. Allen-Walker, L. S. T., Bracewell, R. M., Thierry, G., & Mari-Beffa, P. (2018). Facilitation of fast backward priming after left cerebellar continuous theta-burst stimulation. Cerebellum, 17, 132–142. Scholar
  3. Anglade, C., Thiel, A., & Ansaldo, A. I. (2014). The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: Acritical review of literature. Brain Injury, 28(2), 138–145. Scholar
  4. Antal, A., Nitsche, M. A., Kincses, T. A., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. The European Journal of Neuroscience, 19, 2888–2892. Scholar
  5. Arasanz, C. P., Staines, W. R., Roy, E. A., & Schweizer, T. A. (2012). The cerebellum and its role in word generation: A cTBS study. Cortex, 48(6), 718–724. Scholar
  6. Argyropoulos, G. P. (2011). Cerebellar theta-burst stimulation selectively enhances lexical associative priming. Cerebellum, 10(3), 540–550. Scholar
  7. Argyropoulos, G. P. (2016). The cerebellum, internal models and prediction in ‘non-motor’ aspects of language: A critical review. Brain and Language, 161, 4–17. Scholar
  8. Argyropoulos, G. P., & Muggleton, N. G. (2013). Effects of cerebellar stimulation on processing semantic associations. Cerebellum, 12(1), 83–96. Scholar
  9. Argyropoulos, G. P., Kimiskidis, V. K., & Papagiannopoulos, S. (2011). Theta burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behavioral Neuroscience, 125(5), 724–734. Scholar
  10. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829–839. Scholar
  11. Baillieux, H., De Smet, H. J., Dobbeleir, A., Paquier, P. F., De Deyn, P. P., & Mariën, P. (2009). Cognitive and affective disturbances following focal cerebellar damage in adults: A neuropsychological and SPECT study. Cortex, 46, 869–879. Scholar
  12. Baker, J. M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236. Scholar
  13. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. R. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro: Modulation of neuronal function by electric fields. Journal of Physiology, 557(1), 175–190. Scholar
  14. Biswal, B. B., Van Kylen, J., & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, 10(4-5), 165–170.PubMedCrossRefGoogle Scholar
  15. Boehringer, A., Macher, K., Dukart, J., Villringer, A., & Pleger, B. (2013). Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimulation, 6(4), 649–653. Scholar
  16. Bradnam, L. V., Graetz, L. J., McDonnell, M. N., & Ridding, M. C. (2015). Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Frontiers in Human Neuroscience, 9, 286.
  17. Brusa, L., Ponzo, V., Mastropasqua, C., Picazio, S., Bonnì, S., Di Lorenzo, F., Iani, C., Stefani, A., Stanzione, P., Caltagirone, C., Bozzali, M., & Koch, G. (2014). Theta burst stimulation modulates cerebellar-cortical connectivity in patients with progressive supranuclear palsy. Brain Stimulation, 7(1), 29–35. Scholar
  18. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345.Google Scholar
  19. Chiricozzi, F. R., Clausi, S., Molinari, M., Leggio, M. G. (2008). Phonological short-term store impairment after cerebellar lesion: A single case study. Neuropsychologia, 46(7), 1940–1953. Scholar
  20. Cho, S. S., Yoon, E. J., Bang, S. A., Park, H. S., Kim, Y. K., Strafella, A. P., & Kim, S. E. (2012). Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: A study with FDG PET. Cerebellum, 11(3), 739–748. Scholar
  21. Clausi, S., Bozzali, M., Leggio, M. G., Di Paola, M., Hagberg, G. E., Caltagirone, C., & Molinari, M. (2009). Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: A voxel-based morphometry study. Neuroscience, 162(3), 827–835. Scholar
  22. Clausi, S., Iacobacci, C., Lupo, M., Olivito, G., Molinari, M., & Leggio, M. (2017). The role of the cerebellum in unconscious and conscious processing of emotions: A review. Applied Sciences, 7(5), 521. Scholar
  23. Clausi, S., Olivito, G., Lupo, M., Siciliano, L., Bozzali, M., & Leggio, M. (2019). The cerebellar predictions for social interactions: Theory of mind abilities in patients with degenerative cerebellar atrophy. Frontiers in Cellular Neuroscience, 12, 510.
  24. Das, S., Spoor, M., Sibindi, T. M., Holland, P., Schonewille, M., De Zeeuw, C. I., Frens, M. A., & Donchin, O. (2017). Impairment of long-term plasticity of cerebellar Purkinje cells eliminates the effect of anodal direct current stimulation on vestibulo-ocular reflex habituation. Frontiers in Neuroscience, 11, 444.
  25. Desmond, J. E., Chen, S. H. A., & Shieh, P. B. (2005). Cerebellar transcranial magnetic stimulation impairs verbal working memory. Annals of Neurology, 58(4), 553–560. Scholar
  26. D’Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci, 9, 408. Scholar
  27. D’Mello, A. M., Turkeltaub, P. E., & Stoodley, C. J. (2017). Cerebellar tDCS modulates neural circuits during semantic prediction: A Combined tDCS-fMRI Study. Journal of Neuroscience, 37(6), 1604–1613. Scholar
  28. Dmochowski, J.P., Datta, A., Huang, Y., Richardson, J.D., Bikson, M., Fridriksson, J., Parra, L.P. (2013). Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 75, 12–19. Scholar
  29. Duffau, H. (2003). The role of dominant premotor cortex in language: A study using intraoperative functional mapping in awake patients. NeuroImage, 20(4), 1903–1914.PubMedCrossRefGoogle Scholar
  30. Fabbro, F., Moretti, R., & Bava, A. (2000). Language impairments in patients with cerebellar lesions. Journal of Neurolinguistics, 13, 173–188. Scholar
  31. Farzan, F., Wu, Y., Manor, B., Anastasio, E. M., Lough, M., Novak, V., Greenstein, P. E., & Pascual-Leone, A. (2013). Cerebellar TMS in treatment of a patient with cerebellar ataxia: Evidence from clinical, biomechanics and neurophysiological assessments. Cerebellum, 12(5), 707–712. Scholar
  32. Ferrucci, R., & Priori, A. (2014). Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. NeuroImage, 85, 918–923. Scholar
  33. Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., Zago, S., Barbieri, S., & Priori, A. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of Cognitive Neuroscience, 20(9), 1687–1697. Scholar
  34. Ferrucci, R., Brunoni, A. R., Parazzini, M., Vergari, M., Rossi, E., Fumagalli, M., Mameli, F., Rosa, M., Giannicola, G., Zago, S., & Priori, A. (2013). Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum, 12, 485–492. Scholar
  35. Ferrucci, R., Cortese, F., & Priori, A. (2015). Cerebellar tDCS: How to do it. Cerebellum, 14, 27–30. Scholar
  36. Ferrucci, R., Bocci, T., Cortese, F., Ruggiero, F., & Priori, A. (2016). Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum Ataxias, 3(1), 16.
  37. Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behavioural Brain Research, 208(2), 311–318. Scholar
  38. Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired nonmotor learning and error detection associated with cerebellar damage. Brain, 115, 155–178. Scholar
  39. Flöel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85(3), 934–947. Scholar
  40. Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M. A., Rigonatti, S. P., Silva, M. T. A., Paulus,W., & Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23–30. Scholar
  41. Gainotti, G. (2015). Contrasting opinions on the role of the right hemisphere in the recovery of language. A critical survey. Aphasiology, 29(9), 1–18. Scholar
  42. Galea, J. M., Jayaram, G., Ajagbe, L., & Celnik, P. (2009). Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. Journal of Neuroscience, 29(28), 9115–9122. Scholar
  43. Gebhart, A. L., Petersen, S. E., & Thach, W. T. (2002). Role of the posterolateral cerebellum in language. Annals of the New York Academy of Sciences, 978, 318–333. Scholar
  44. Gilligan, T. M., & Rafal, R. D. (2018). An opponent process cerebellar asymmetry for regulating word association priming. Cerebellum, 18(1), 47–55. Scholar
  45. Gottwald, B., Wilde, B., Mihajlovic, Z., & Mehdorn, H. M. (2004). Evidence for distinct cognitive deficits after focal cerebellar lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 75(11), 1524–1531. Scholar
  46. Grimaldi, G., & Manto, M. (2013). Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Annals of Biomedical Engineering, 41, 2437–2447. Scholar
  47. Grimaldi, G., Argyropoulos, G. P., Boehringer, A., Celnik, P., Edwards, M. J., Ferrucci, R., Galea, J. M., Groiss, S. J., Hiraoka, K., Kassavetis, P., Lesage, E., Manto, M., Miall, R.C., Priori, A., Sadnicka, A., Ugawa, Y., & Ziemann, U. (2014). Non-invasive cerebellar stimulation—A consensus paper. Cerebellum, 13(1), 121–138. Scholar
  48. Grimaldi, G., Argyropoulos, G. P., Bastian, A., Cortes, M., Davis, N. J., Edwards, D. J., Ferrucci, R., Fregni, F., Galea, J. M., Hamada, M., Manto, M., Miall, R. C., Morales-Quezada, L., Pope, P. A., Priori, A., Rothwell, J., Tomlinson, S. P., & Celnik, P. (2016). Cerebellar transcranial direct current stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. The Neuroscientist, 22(1), 83–97. Scholar
  49. Haggard, P., Jenner, J., & Wing, A. (1994). Coordination of aimed movements in a case with unilateral cerebellar damage. Neuropsychologia, 32, 827–846. Scholar
  50. Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187–199. Scholar
  51. Hamada, M., Strigaro, G., Murase, N., Sadnicka, A., Galea, J. M., Edwards, M. J., & Rothwell, J. C. (2012). Cerebellar modulation of human associative plasticity: Cerebellum and human associative plasticity. Journal of Physiology, 590(10), 2365–2374. Scholar
  52. Hardwick, R. M., Lesage, E., & Miall, R. C. (2014). Cerebellar transcranial magnetic stimulation: The role of coil geometry and tissue depth. Brain Stimulation, 7, 643–649. Scholar
  53. Hokkanen, L. S. K., Kauranen, V., Roine, R. O., Salonen, O., & Kotila, M. (2006). Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology, 13(2), 161–170. Scholar
  54. Honey, G. D., Bullmore, E. T., & Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage, 12(5), 495–503. Scholar
  55. Hubrich-Ungureanu, P., Kaemmerer, N., Henn, F. A., & Braus, D. F. (2002). Lateralized organization of the cerebellum in a silent verbal fluency task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 319(2), 91–94. Scholar
  56. Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W., Gerloff,C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490–499. Scholar
  57. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9(4), 304–313. Scholar
  58. Jahanshahi, M., & Rothwell, J. (2000). Transcranial magnetic stimulation studies of cognition: An emerging field. Experimental Brain Research, 131, 1–9. Scholar
  59. Jansen, A., Flöel, A., Van Randenborgh, J., Konrad, C., Rotte, M., Förster, A., Deppe, M., & Knecht, S. (2005). Crossed cerebro-cerebellar language dominance. Human Brain Mapping, 24(3), 165–172. Scholar
  60. Justus, T. (2004). The cerebellum and English grammatical morphology: Evidence from production, comprehension, and grammaticality judgements. Journal of Cognitive Neuroscience, 16(7), 1115–1130. Scholar
  61. Khan, A. J., Nair, A., Keown, C. L., Datko, M. C., Lincoln, A. J., & Müller, R. (2015). Cerebro-cerebellar resting state functional connectivity in children and adolescents with autism spectrum disorder. Biological Psychiatry, 28, 625–634.Google Scholar
  62. Koch, G., Mori, F., Marconi, B., Codeca, C., Pecchioli, C., Salerno, S., Torriero, S., Lo Gerfo, E., Mir, P., Oliveri, M., & Caltagirone, C. (2008). Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clinical Neurophysiology, 119, 2559–2569. Scholar
  63. Lesage, E., Morgan, B. E., Olson, A. C., Meyer, A. S., & Miall, R. C. (2012). Cerebellar rTMS disrupts predictive language processing. Current Biology, 22, R794–R795. Scholar
  64. Leggio, M., & Molinari, M. (2015). Cerebellar sequencing: A trick for predicting the future. Cerebellum, 14, 35–38. Scholar
  65. Leggio, M., Silveri, M., Petrosini, L., & Molinari, M. (2000). Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. Journal of Neurology, Neurosurgery, and Psychiatry, 69, 102–106. Scholar
  66. Leow, L. A., Marinovic, W., Riek, S., & Carroll, T. J. (2017). Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation. PLoS ONE, 12(7), e0179977. Scholar
  67. Lupo, M., Troisi, E., Chiricozzi, F. R., Clausi, S., Molinari, M., & Leggio, M. (2015). Inability to process negative emotions in cerebellar damage: A functional transcranial Doppler sonographic study. Cerebellum, 14(6), 663–669. Scholar
  68. Lupo, M., Siciliano, L., Olivito, G., Masciullo, M., Bozzali, M., Molinari, M., Cercignani, M., Silveri, M. C., & Leggio, M. (2019). Non-linear spelling in writing after a pure cerebellar lesion. Neuropsychologia, 132, 107143. Scholar
  69. Majerus, S., Laureys, S., Collette, F., Del Fiore, G., Degueldre, C., Luxen, A., Van der Linden, M., Maquet, P., & Metz-Lutz, M. (2003). Phonological short-term memory networks following recovery from Landau and Kleffner syndrome. Human Brain Mapping, 19(3), 133–144.
  70. Macher, K., Boehringer, A., Villringer, A., & Pleger, B. (2013). Anodal cerebellar tDCS impairs verbal working memory. Clinical Neurophysiology, 124(10), e87–e88. Scholar
  71. Macher, K., Boehringer, A., Villringer, A., & Pleger, B. (2014). Cerebellar parietal connections underpin phonological storage. Journal of Neuroscience, 34(14), 5029–5037. Scholar
  72. Manto, M., & Mariën, P. (2015). Schmahmann's syndrome – identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias, 2, 2. Scholar
  73. Marangolo, P., Fiori, V., Caltagirone, C., Pisano, F., & Priori, A. (2018). Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. Journal of Cognitive Neuroscience, 30(2), 188–199. Scholar
  74. Mariën, P., & Borgatti, R. (2018). Language and the cerebellum. Handbook of Clinical Neurology, 154, 181–202. Scholar
  75. Mariën, P., & Verhoeven, J. (2007). Cerebellar involvement in motor speech planning: Some further evidence from foreign accent syndrome. Folia Phoniatrica et Logopaedica, 59, 210–217. Scholar
  76. Mariën, P., Saerens, J., Nanhoe, R., Moens, E., Nagels, G., Pickut, B. A., Dierckx, R. A., & De Deyn, P. P. (1996). Cerebellar induced aphasia: Case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. Journal of the Neurological Sciences, 144, 34–43. Scholar
  77. Mariën, P., Engelborghs, S., Pickut, B., & De Deyn, P. P. (2000). Aphasia following cerebellar damage: Fact or fallacy? Journal of Neurolinguistics, 13, 145–171. Scholar
  78. Mariën, P., Engelborghs, S., Fabbro, F., & De Deyn, P. P. (2001). The lateralized linguistic cerebellum: A review and a new hypothesis. Brain and Language, 79, 580–600. Scholar
  79. Mariën, P., Baillieux, H., De Smet, H. J., Engelborghs, S., Wilssens, I., Paquier, P., & De Deyn, P. P. (2009). Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: A case study. Cortex, 45, 527–536. Scholar
  80. Mariën, P., de Smet, E., De Smet, H. J., Wackenier, P., Dobbeleir, A., & Verhoeven, J. (2013). “Apraxic dysgraphia” in a 15-year-old left-handed patient: Disruption of the cerebello-cerebral network involved in the planning and execution of graphomotor movements. Cerebellum, 12, 131–139. Scholar
  81. McEvoy, S. D., Lee, A., Poliakov, A., Friedman, S., Shaw, D., Browd, S. R., Ellenbogen, R. G., Ojemann, J. G., & Mac Donald, C. L. (2016). Longitudinal cerebellar diffusion tensor imaging changes in posterior fossa syndrome. Neuroimage: Clinical, 12, 582–590.Google Scholar
  82. Merabet, L., & Pascual-Leone, A. (2008). Studies of crossmodal functions with TMS. In E. M. Wassermann, C. M. Epstein, U. Ziemann, et al. (Eds.), Oxford handbook of transcranial Stimulation (pp. 447–462). Oxford: Oxford University Press.Google Scholar
  83. Méndez Orellana, C., Visch-Brink, E., Vernooij, M., Kalloe, S., Satoer, D., Vincent, A., van der Lugt, A., & Smits, M. (2015). Crossed cerebrocerebellar language lateralization: An additional diagnostic feature for assessing atypical language representation in presurgical functional MR imaging. AJNR. American Journal of Neuroradiology, 36(3), 518–524. Scholar
  84. Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203–216. Scholar
  85. Miall, R. C., Antony, J., Goldsmith-Sumner, A., Harding, S. R., McGovern, C., & Winter J. L. (2016). Modulation of linguistic prediction by tDCS of the right lateral cerebellum. Neuropsychologia, 86, 103–109. Scholar
  86. Moberget, T., & Ivry, R. B. (2016). Cerebellar contributions to motor control and language comprehension: Searching for common computational principles. Annals of the New York Academy of Sciences, 1369, 154–171. Scholar
  87. Monti, A., Ferrucci, R., Fumagalli, M., Mameli, F., Cogiamanian, F., Ardolino, G., & Priori, A. (2013). Transcranial direct current stimulation (tDCS) and language. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 832–842. Scholar
  88. Mooshammer, C., Goldstein, L., Nam, H., McClure, S., Saltzman, E., & Tiede, M. (2012). Bridging planning and execution: Temporal planning of syllables. Journal of Phonetics, 40, 374–389. Scholar
  89. Moretti, R., Torre, P., Antonello, R. M., Carraro, N., Zambito-Marsala, S., Ukmar, M. J., Capus, L., Gioulis, M., Cazzato, G., & Bava, A. (2002). Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Perceptual and Motor Skills, 94, 677–694. Scholar
  90. Murdoch, B., & Whelan, B. M. (2007). Language disorders subsequent to left cerebellar lesions: A case for bilateral cerebellar involvement in language? Folia Phoniatrica et Logopaedica, 59, 184–189. Scholar
  91. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–1901. Scholar
  92. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. Scholar
  93. Nitsche, M. A., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): A review. Experimental Neurology, 219, 14–19. Scholar
  94. Nordmann, G., Azorina, V., Langguth, B., & Schecklmann, M. (2015). A systematic review of non-motor rTMS induced motor cortex plasticity. Frontiers in Human Neuroscience, 9, 416. Scholar
  95. Oliveri, M., Bonnì, S., Turriziani, P., Koch, G., Lo Gerfo, E., Torriero, S., Vicario, C. M., Petrosini, L., & Caltagirone, C. (2009). Motor and linguistic linking of space and time in the cerebellum. PLoS ONE, 4(11), e7933. Scholar
  96. Olivito, G., Lupo, M., Iacobacci, C., Clausi, S., Romano, S., Masciullo, M., Molinari, M., Cercignani, M., Bozzali, M., & Leggio, M. (2017). Microstructural MRI basis of the cognitive functions in èatients with spinocerebellar ataxia type 2. Neuroscience, 366, 44–53. Scholar
  97. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953–965.Google Scholar
  98. Oulad Ben Taib, N., & Manto, M. (2013). Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plasticity, 2013, 1–12. Scholar
  99. Parazzini, M., Rossi, E., Ferrucci, R., Liorni, I., Priori, A., & Ravazzani, P. (2014). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clinical Neurophysiology, 125, 577–584. Scholar
  100. Pascual-Leone, A., Cohen, L. G., Shotland, L. I., Dang, N., Pikus, A., Wassermann, E. M., Brasil-Neto, J. P., Valls-Solé, J., & Hallett, M. (1992). No evidence of hearing loss in humans due to transcranial magnetic stimulation. Neurology, 42(3), 647–651. Scholar
  101. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342–345. Scholar
  102. Paulus, W. (2003). Transcranial direct current stimulation (tDCS). Supplements to Clinical Neurophysiology, 56, 249–254. Scholar
  103. Picazio, S., Oliveri, M., Koch, G., Caltagirone, C., & Petrosini, L. (2013). Cerebellar contribution to mental rotation: A cTBS study. Cerebellum, 12, 856–861. Scholar
  104. Pope, P. A., & Miall, R. C. (2015). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulation, 5(2), 84–94. Scholar
  105. Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2, 241–245. Scholar
  106. Rahman, A., Toshev, P. K., & Bikson, M. (2014). Polarizing cerebellar neurons with transcranial direct current stimulation. Clinical Neurophysiology, 125(3), 435–438. Scholar
  107. Rami, L., Gironell, A., Kulisevsky, J., García-Sánchez, C., Berthier, M., & Estévez-González, A. (2003). Effects of repetitive transcranial magnetic stimulation on memory subtypes: A controlled study. Neuropsychologia, 41(14), 1877–1883. Scholar
  108. Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306–320. Scholar
  109. Richter, S., Gerwig, M., Aslan, B., Wilhelm, H., Schoch, B., Dimitrova, A., Gizewski, E. R., Ziegler, W., Karnath, H., & Timmann, D. (2007). Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. Journal of Neurology, 254(9), 1193–1203.Google Scholar
  110. Rogalewski, A., Breitenstein, C., Nitsche, M. A., Paulus, W., & Knecht, S. (2004). Transcranial direct current stimulation disrupts tactile perception. The European Journal of Neuroscience, 20(1), 313–316. Scholar
  111. Roth, M. J., Synofzik, M., & Lindner, A. (2013). The cerebellum optimizes perceptual predictions about external sensory events. Current Biology, 23, 930–935. Scholar
  112. Runnqvist, E., Bonnard, M., Gauvin, H. S., Attarian, S., Trébuchon, A., Hartsuiker, R. J., & Alario, F. (2016). Internal modeling of upcoming speech: A causal role of the right posterior cerebellum in non-motor aspects of language production. Cortex, 81, 203–214. Scholar
  113. Sandrini, M., Umiltà, C., & Rusconi, E. (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience and Biobehavioral Reviews, 35, 516–536. Scholar
  114. Schmahmann, J. D. (1996). From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.<174::AID-HBM3>3.0.CO;2-0CrossRefPubMedGoogle Scholar
  115. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(4), 561–579. Scholar
  116. Schmahmann, J. D., Smith, E. E., Eichler, F. S., & Filley, C. M. (2008). Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Annals of the New York Academy of Sciences, 1142, 266–309. Scholar
  117. Schweizer, T. A., Alexander, M. P., Gillingham, B. A. S., Cusimano, M., & Stuss, D. T. (2010). Lateralized cerebellar contributions to word generation: A phonemic and semantic fluency study. Behavioural Neurology, 23, 31–37.
  118. Shimizu, H., Tsuda, T., Shiga, Y., Miyazawa, K., Onodera, Y., Matsuzaki, M., Nakashima, I., Furukawa, K., Aoki, M., Kato, H., Yamazaki, T., & Itoyama, Y. (1999). Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration. The Tohoku Journal of Experimental Medicine, 189, 203–211. Scholar
  119. Shiga, Y., Tsuda, T., Itoyama, Y., Shimizu, H., Miyazawa, K.-I., Jin, K., & Yamazaki, T. (2002). Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 124–126. Scholar
  120. Silveri, M. C., Leggio, M. G., & Molinari, M. (1994). The cerebellum contributes to linguistic production: A case of agrammatic speech following a right cerebellar lesion. Neurology, 44, 2047–2050. Scholar
  121. Silveri, M. C., Misciagna, S., Leggio, M. G., & Molinari, M. (1999). Cerebellar spatial dysgraphia: Further evidence. Journal of Neurology, 246(4), 312–313. Scholar
  122. Spencer, K. A., & Slocomb, D. L. (2007). The neural basis of ataxic dysarthria. Cerebellum, 6(1), 58–65. Scholar
  123. Starowicz-Filip, A., Chrobak, A. A., Moskała, M., Krzyżewski, R. M., Kwinta, B., Kwiatkowski, S., Milczarek, O., Rajtar-Zembaty, A., & Przewoźnik, D. (2017). The role of the cerebellum in the regulation of language functions. Psychiatria Polska, 51(4), 661–671. Scholar
  124. Stoodley, C. J., & Schmahmann, J. D. (2009). The cerebellum and language: Evidence from patients with cerebellar degeneration. Brain and Language, 110, 149–153. Scholar
  125. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844. Scholar
  126. Stoodley, C. J., MacMore, J. P., Makris, N., Sherman, J. C., & Schmahmann, J. D. (2016). Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. Neuroimage: Clinical, 12, 765–775.Google Scholar
  127. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience (Palo Alto, CA), 32, 413–434. Scholar
  128. Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Lupo, M., Molinari, M., & Leggio, M. G. (2011). The cerebellar cognitive profile. Brain, 134, 3669–3683. Scholar
  129. Terrien, S., Gierski, F., Caillies, S., Baltazart, V., Portefaix, C., Pierot, L., & Besche-Richard, C. (2013). Neural substrates of forward and backward associative priming: a functional MRI study. Psychology, 4, 34–41. Scholar
  130. Tomlinson, S., Davis, N., & Bracewell, M. (2013). Brain stimulation studies of non-motor cerebellar function: A systematic review. Neuroscience and Biobehavioral Reviews, 37, 766–789. Scholar
  131. Tomlinson, S., Davis, N., Morgan, H., & Bracewell, M. (2014). Cerebellar contributions to verbal working memory. Cerebellum, 13, 354–361. Scholar
  132. Turkeltaub, P. E., Swears, M. K., D’Mello, A. M., & Stoodley, C. J. (2016). Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restorative Neurology and Neuroscience, 34(4), 491–505. Scholar
  133. Ugawa, Y., & Iwata, N. K. (2005). Cerebellar stimulation in normal subjects and ataxic patients. In M. Hallet & S. Chokroverty (Eds.), Magnetic stimulation in clinical neurophysiology (pp. 197–210). Philadelphia, PA: Elsevier.CrossRefGoogle Scholar
  134. Ugawa, Y., Genba-Shimizu, K., Rothwell, J. C., et al. (1994). Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Annals of Neurology, 36(1), 90–96. Scholar
  135. Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R., & Kanazawa, I. (1995). Magnetic stimulation over the cerebellum in humans. Annals of Neurology, 37, 703–713. Scholar
  136. Vallar, G., & Bolognini, N. (2011). Behavioural facilitation following brain stimulation: Implications for neurorehabilitation. Neuropsychological Rehabilitation, 21(5), 618–649. Scholar
  137. van Dun, K., Bodranghien, F. C., Mariën, P., & Manto, M. U. (2016). tDCS of the cerebellum: Where do we stand in 2016? Technical issues and critical review of the literature. Frontiers in Human Neuroscience, 10, 199. Scholar
  138. van Dun, K., Bodranghien, F., Manto, M., & Mariën, P. (2017). Targeting the cerebellum by noninvasive neurostimulation: A review. Cerebellum, 16(3), 695–741. Scholar
  139. van Dun, K., Mitoma, H., & Mario Manto, M. (2018). Cerebellar cortex as a therapeutic target for neurostimulation. Cerebellum, 17, 777–787. Scholar
  140. Verly, M., Verhoeven, J., Zink, I., Mantini , D., Peeters, R., Deprez, S., Emsell, L., Boets, B., Noens, I., Steyaert, J., Lagae, L., De Cock, P., Rommel, N., & Sunaert, S. (2014). Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum. Neuroimage: Clinical, 4, 374–382. Scholar
  141. Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews. Neuroscience, 1, 73–80. Scholar
  142. Woods, A .J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., Fregni, F., Herrmann, C. S., Kappenman, E. S., Knotkova, H., Liebetanz, D., Miniussi, C., Miranda, P. C., Paulus, W., Priori, A., Reato, D., Stagg, C., Wenderoth, N., & Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048. Scholar

Further Reading

  1. Marangolo, P., Fiori, V., Caltagirone, C., et al. (2018). Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. Journal of Cognitive Neuroscience, 30(2), 188–199. Scholar
  2. Turkeltaub, P. E., Swears, M. K., D'Mello, A. M., & Stoodley, C. J. (2016). Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restorative Neurology and Neuroscience, 34(4), 491–505. Scholar
  3. van Dun, K., Mitoma, H., & Mario Manto, M. (2018). Cerebellar cortex as a therapeutic target for neurostimulation. Cerebellum, 17, 777–787. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maria Leggio
    • 1
    • 2
    Email author
  • Giusy Olivito
    • 1
    • 2
  • Michela Lupo
    • 2
  • Silvia Clausi
    • 2
  1. 1.Department of PsychologySapienza University of RomeRomeItaly
  2. 2.Ataxia LaboratoryIRCCS Fondazione Santa LuciaRomeItaly

Personalised recommendations