Advertisement

The Cerebellum: A Therapeutic Target in Treating Speech and Language Disorders

  • Maria LeggioEmail author
  • Giusy Olivito
  • Michela Lupo
  • Silvia Clausi
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Approaches to thinking about the cerebellum have historically been overshadowed by the view that it is a structure mainly involved in the regulation and coordination of motor control. During the past decades, neuroanatomical, neuroimaging, and clinical studies have substantially modified this traditional view and provided new insights and a body of evidence for cerebellar involvement in a wide range of nonmotor processes, such as cognitive, affective, and social processes. Within the broad range of functions in which the cerebellum is involved, several clinical studies have shown the occurrence of different types of speech and language impairments subsequent to cerebellar damage. In the first part of the present chapter, we briefly summarize the motor and nonmotor language impairments that have been reported after cerebellar damage in adults and the associated cerebello-cerebral network alterations. Starting from these clinical and neuroimaging data about the “linguistic cerebellum,” in the second part of the chapter, we provide an overview of the studies that used noninvasive transcranial neuromodulation techniques to further investigate the cerebellar role in speech and language domains. Furthermore, we show the current state of the art and translational potential of the use of cerebellar neuromodulation to improve speech and language functions after cortical and subcortical damage.

Keywords

Cerebellum Speech Language Neuromodulation treatment TMS tDCS MRI 

Abbreviations

ASD

Autism spectrum disorders

BOLD

Blood oxygen level dependent

CBI

Cerebellar brain inhibition

cTBS

Continuous theta-burst stimulation

DTI

Diffusion tensor imaging

FC

Functional connectivity

GM

Gray matter

iTBS

Intermittent theta-burst stimulation

MEPs

Motor-evoked potentials

PASAT

Paced auditory serial addition task

PASST

Paced auditory serial subtraction task

PSP

Progressive supranuclear palsy

rs-fMRI

Resting-state functional magnetic resonance imaging

rTMS

Repetitive transcranial magnetic stimulation

SCA

Spinocerebellar ataxia

TBS

Theta-burst stimulation

tDCS

Transcranial direct current stimulation

TMS

Transcranial magnetic stimulation

VWM

Verbal working memory

References

  1. Alario, F. X. (2006). The role of the supplementary motor area (SMA) in word production. Brain Research, 1076(1), 129–143.PubMedCrossRefGoogle Scholar
  2. Allen-Walker, L. S. T., Bracewell, R. M., Thierry, G., & Mari-Beffa, P. (2018). Facilitation of fast backward priming after left cerebellar continuous theta-burst stimulation. Cerebellum, 17, 132–142.  https://doi.org/10.1007/s12311-017-0881-6CrossRefGoogle Scholar
  3. Anglade, C., Thiel, A., & Ansaldo, A. I. (2014). The complementary role of the cerebral hemispheres in recovery from aphasia after stroke: Acritical review of literature. Brain Injury, 28(2), 138–145.  https://doi.org/10.3109/02699052.2013.859734CrossRefPubMedGoogle Scholar
  4. Antal, A., Nitsche, M. A., Kincses, T. A., Kruse, W., Hoffmann, K. P., & Paulus, W. (2004). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. The European Journal of Neuroscience, 19, 2888–2892.  https://doi.org/10.1111/j.1460-9568.2004.03367.xPubMedCrossRefGoogle Scholar
  5. Arasanz, C. P., Staines, W. R., Roy, E. A., & Schweizer, T. A. (2012). The cerebellum and its role in word generation: A cTBS study. Cortex, 48(6), 718–724.  https://doi.org/10.1016/j.cortex.2011.02.021PubMedCrossRefGoogle Scholar
  6. Argyropoulos, G. P. (2011). Cerebellar theta-burst stimulation selectively enhances lexical associative priming. Cerebellum, 10(3), 540–550.  https://doi.org/10.1007/s12311-011-0269-yCrossRefPubMedGoogle Scholar
  7. Argyropoulos, G. P. (2016). The cerebellum, internal models and prediction in ‘non-motor’ aspects of language: A critical review. Brain and Language, 161, 4–17.  https://doi.org/10.1016/j.bandl.2015.08.003CrossRefPubMedGoogle Scholar
  8. Argyropoulos, G. P., & Muggleton, N. G. (2013). Effects of cerebellar stimulation on processing semantic associations. Cerebellum, 12(1), 83–96.  https://doi.org/10.1007/s12311-012-0398-yCrossRefPubMedGoogle Scholar
  9. Argyropoulos, G. P., Kimiskidis, V. K., & Papagiannopoulos, S. (2011). Theta burst stimulation of the right neocerebellar vermis selectively disrupts the practice-induced acceleration of lexical decisions. Behavioral Neuroscience, 125(5), 724–734.  https://doi.org/10.1037/a0025134CrossRefPubMedGoogle Scholar
  10. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829–839.  https://doi.org/10.1038/nrn1201CrossRefPubMedGoogle Scholar
  11. Baillieux, H., De Smet, H. J., Dobbeleir, A., Paquier, P. F., De Deyn, P. P., & Mariën, P. (2009). Cognitive and affective disturbances following focal cerebellar damage in adults: A neuropsychological and SPECT study. Cortex, 46, 869–879.  https://doi.org/10.1016/j.cortex.2009.09.002PubMedCrossRefGoogle Scholar
  12. Baker, J. M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236.  https://doi.org/10.1161/STROKEAHA.109.576785CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. R. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro: Modulation of neuronal function by electric fields. Journal of Physiology, 557(1), 175–190.  https://doi.org/10.1113/jphysiol.2003.055772PubMedPubMedCentralCrossRefGoogle Scholar
  14. Biswal, B. B., Van Kylen, J., & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, 10(4-5), 165–170.PubMedCrossRefGoogle Scholar
  15. Boehringer, A., Macher, K., Dukart, J., Villringer, A., & Pleger, B. (2013). Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimulation, 6(4), 649–653.  https://doi.org/10.1016/j.brs.2012.10.001PubMedCrossRefGoogle Scholar
  16. Bradnam, L. V., Graetz, L. J., McDonnell, M. N., & Ridding, M. C. (2015). Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Frontiers in Human Neuroscience, 9, 286.  https://doi.org/10.3389/fnhum.2015.00286
  17. Brusa, L., Ponzo, V., Mastropasqua, C., Picazio, S., Bonnì, S., Di Lorenzo, F., Iani, C., Stefani, A., Stanzione, P., Caltagirone, C., Bozzali, M., & Koch, G. (2014). Theta burst stimulation modulates cerebellar-cortical connectivity in patients with progressive supranuclear palsy. Brain Stimulation, 7(1), 29–35.  https://doi.org/10.1016/j.brs.2013.07.003PubMedCrossRefGoogle Scholar
  18. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345.Google Scholar
  19. Chiricozzi, F. R., Clausi, S., Molinari, M., Leggio, M. G. (2008). Phonological short-term store impairment after cerebellar lesion: A single case study. Neuropsychologia, 46(7), 1940–1953.  https://doi.org/10.1016/j.neuropsychologia.2008.01.024PubMedCrossRefGoogle Scholar
  20. Cho, S. S., Yoon, E. J., Bang, S. A., Park, H. S., Kim, Y. K., Strafella, A. P., & Kim, S. E. (2012). Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: A study with FDG PET. Cerebellum, 11(3), 739–748.  https://doi.org/10.1007/s12311-011-0333-7CrossRefGoogle Scholar
  21. Clausi, S., Bozzali, M., Leggio, M. G., Di Paola, M., Hagberg, G. E., Caltagirone, C., & Molinari, M. (2009). Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: A voxel-based morphometry study. Neuroscience, 162(3), 827–835.  https://doi.org/10.1016/j.neuroscience.2009.02.001PubMedCrossRefGoogle Scholar
  22. Clausi, S., Iacobacci, C., Lupo, M., Olivito, G., Molinari, M., & Leggio, M. (2017). The role of the cerebellum in unconscious and conscious processing of emotions: A review. Applied Sciences, 7(5), 521.  https://doi.org/10.3390/app7050521CrossRefGoogle Scholar
  23. Clausi, S., Olivito, G., Lupo, M., Siciliano, L., Bozzali, M., & Leggio, M. (2019). The cerebellar predictions for social interactions: Theory of mind abilities in patients with degenerative cerebellar atrophy. Frontiers in Cellular Neuroscience, 12, 510.  https://doi.org/10.3389/fncel.2018.00510
  24. Das, S., Spoor, M., Sibindi, T. M., Holland, P., Schonewille, M., De Zeeuw, C. I., Frens, M. A., & Donchin, O. (2017). Impairment of long-term plasticity of cerebellar Purkinje cells eliminates the effect of anodal direct current stimulation on vestibulo-ocular reflex habituation. Frontiers in Neuroscience, 11, 444.  https://doi.org/10.3389/fnins.2017.00444
  25. Desmond, J. E., Chen, S. H. A., & Shieh, P. B. (2005). Cerebellar transcranial magnetic stimulation impairs verbal working memory. Annals of Neurology, 58(4), 553–560.  https://doi.org/10.1002/ana.20604CrossRefPubMedGoogle Scholar
  26. D’Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci, 9, 408.  https://doi.org/10.3389/fnins.2015.00408CrossRefPubMedPubMedCentralGoogle Scholar
  27. D’Mello, A. M., Turkeltaub, P. E., & Stoodley, C. J. (2017). Cerebellar tDCS modulates neural circuits during semantic prediction: A Combined tDCS-fMRI Study. Journal of Neuroscience, 37(6), 1604–1613.  https://doi.org/10.1523/JNEUROSCI.2818-16.2017CrossRefPubMedGoogle Scholar
  28. Dmochowski, J.P., Datta, A., Huang, Y., Richardson, J.D., Bikson, M., Fridriksson, J., Parra, L.P. (2013). Targeted transcranial direct current stimulation for rehabilitation after stroke. NeuroImage, 75, 12–19.  https://doi.org/10.1016/j.neuroimage.2013.02.049PubMedPubMedCentralCrossRefGoogle Scholar
  29. Duffau, H. (2003). The role of dominant premotor cortex in language: A study using intraoperative functional mapping in awake patients. NeuroImage, 20(4), 1903–1914.PubMedCrossRefGoogle Scholar
  30. Fabbro, F., Moretti, R., & Bava, A. (2000). Language impairments in patients with cerebellar lesions. Journal of Neurolinguistics, 13, 173–188.  https://doi.org/10.1016/S0911-6044(00)00010-5CrossRefGoogle Scholar
  31. Farzan, F., Wu, Y., Manor, B., Anastasio, E. M., Lough, M., Novak, V., Greenstein, P. E., & Pascual-Leone, A. (2013). Cerebellar TMS in treatment of a patient with cerebellar ataxia: Evidence from clinical, biomechanics and neurophysiological assessments. Cerebellum, 12(5), 707–712.  https://doi.org/10.1007/s12311-013-0485-8PubMedCrossRefGoogle Scholar
  32. Ferrucci, R., & Priori, A. (2014). Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. NeuroImage, 85, 918–923.  https://doi.org/10.1016/j.neuroimage.2013.04.122CrossRefPubMedGoogle Scholar
  33. Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., Zago, S., Barbieri, S., & Priori, A. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of Cognitive Neuroscience, 20(9), 1687–1697.  https://doi.org/10.1162/jocn.2008.20112PubMedCrossRefGoogle Scholar
  34. Ferrucci, R., Brunoni, A. R., Parazzini, M., Vergari, M., Rossi, E., Fumagalli, M., Mameli, F., Rosa, M., Giannicola, G., Zago, S., & Priori, A. (2013). Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum, 12, 485–492.  https://doi.org/10.1007/s12311-012-0436-9PubMedCrossRefGoogle Scholar
  35. Ferrucci, R., Cortese, F., & Priori, A. (2015). Cerebellar tDCS: How to do it. Cerebellum, 14, 27–30.  https://doi.org/10.1007/s12311-014-0599-7CrossRefPubMedGoogle Scholar
  36. Ferrucci, R., Bocci, T., Cortese, F., Ruggiero, F., & Priori, A. (2016). Cerebellar transcranial direct current stimulation in neurological disease. Cerebellum Ataxias, 3(1), 16.  https://doi.org/10.1186/s40673-016-0054-2
  37. Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behavioural Brain Research, 208(2), 311–318.  https://doi.org/10.1016/j.bbr.2009.10.030PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired nonmotor learning and error detection associated with cerebellar damage. Brain, 115, 155–178.  https://doi.org/10.1093/brain/115.1.155PubMedCrossRefGoogle Scholar
  39. Flöel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85(3), 934–947.  https://doi.org/10.1016/j.neuroimage.2013.05.098CrossRefPubMedGoogle Scholar
  40. Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M. A., Rigonatti, S. P., Silva, M. T. A., Paulus,W., & Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23–30.  https://doi.org/10.1007/s00221-005-2334-6PubMedCrossRefGoogle Scholar
  41. Gainotti, G. (2015). Contrasting opinions on the role of the right hemisphere in the recovery of language. A critical survey. Aphasiology, 29(9), 1–18.  https://doi.org/10.1080/02687038.2015.1027170CrossRefGoogle Scholar
  42. Galea, J. M., Jayaram, G., Ajagbe, L., & Celnik, P. (2009). Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. Journal of Neuroscience, 29(28), 9115–9122.  https://doi.org/10.1523/JNEUROSCI.2184-09.2009CrossRefPubMedGoogle Scholar
  43. Gebhart, A. L., Petersen, S. E., & Thach, W. T. (2002). Role of the posterolateral cerebellum in language. Annals of the New York Academy of Sciences, 978, 318–333.  https://doi.org/10.1111/j.1749-6632.2002.tb07577.xCrossRefPubMedGoogle Scholar
  44. Gilligan, T. M., & Rafal, R. D. (2018). An opponent process cerebellar asymmetry for regulating word association priming. Cerebellum, 18(1), 47–55.  https://doi.org/10.1007/s12311-018-0949-yCrossRefPubMedCentralGoogle Scholar
  45. Gottwald, B., Wilde, B., Mihajlovic, Z., & Mehdorn, H. M. (2004). Evidence for distinct cognitive deficits after focal cerebellar lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 75(11), 1524–1531.  https://doi.org/10.1136/jnnp.2003.018093CrossRefPubMedPubMedCentralGoogle Scholar
  46. Grimaldi, G., & Manto, M. (2013). Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Annals of Biomedical Engineering, 41, 2437–2447.  https://doi.org/10.1007/s10439-013-0846-yCrossRefPubMedGoogle Scholar
  47. Grimaldi, G., Argyropoulos, G. P., Boehringer, A., Celnik, P., Edwards, M. J., Ferrucci, R., Galea, J. M., Groiss, S. J., Hiraoka, K., Kassavetis, P., Lesage, E., Manto, M., Miall, R.C., Priori, A., Sadnicka, A., Ugawa, Y., & Ziemann, U. (2014). Non-invasive cerebellar stimulation—A consensus paper. Cerebellum, 13(1), 121–138.  https://doi.org/10.1007/s12311-013-0514-7CrossRefGoogle Scholar
  48. Grimaldi, G., Argyropoulos, G. P., Bastian, A., Cortes, M., Davis, N. J., Edwards, D. J., Ferrucci, R., Fregni, F., Galea, J. M., Hamada, M., Manto, M., Miall, R. C., Morales-Quezada, L., Pope, P. A., Priori, A., Rothwell, J., Tomlinson, S. P., & Celnik, P. (2016). Cerebellar transcranial direct current stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. The Neuroscientist, 22(1), 83–97.  https://doi.org/10.1177/1073858414559409CrossRefPubMedGoogle Scholar
  49. Haggard, P., Jenner, J., & Wing, A. (1994). Coordination of aimed movements in a case with unilateral cerebellar damage. Neuropsychologia, 32, 827–846.  https://doi.org/10.1016/0028-3932(94)90021-3CrossRefPubMedGoogle Scholar
  50. Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187–199.  https://doi.org/10.1016/j.neuron.2007.06.026CrossRefPubMedGoogle Scholar
  51. Hamada, M., Strigaro, G., Murase, N., Sadnicka, A., Galea, J. M., Edwards, M. J., & Rothwell, J. C. (2012). Cerebellar modulation of human associative plasticity: Cerebellum and human associative plasticity. Journal of Physiology, 590(10), 2365–2374.  https://doi.org/10.1113/jphysiol.2012.230540PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hardwick, R. M., Lesage, E., & Miall, R. C. (2014). Cerebellar transcranial magnetic stimulation: The role of coil geometry and tissue depth. Brain Stimulation, 7, 643–649.  https://doi.org/10.1016/j.brs.2014.04.009CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hokkanen, L. S. K., Kauranen, V., Roine, R. O., Salonen, O., & Kotila, M. (2006). Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology, 13(2), 161–170.  https://doi.org/10.1111/j.1468-1331.2006.01157.xPubMedCrossRefGoogle Scholar
  54. Honey, G. D., Bullmore, E. T., & Sharma, T. (2000). Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. NeuroImage, 12(5), 495–503.  https://doi.org/10.1006/nimg.2000.0624CrossRefPubMedGoogle Scholar
  55. Hubrich-Ungureanu, P., Kaemmerer, N., Henn, F. A., & Braus, D. F. (2002). Lateralized organization of the cerebellum in a silent verbal fluency task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 319(2), 91–94.  https://doi.org/10.1016/S0304-3940(01)02566-6CrossRefPubMedGoogle Scholar
  56. Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W., Gerloff,C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490–499.  https://doi.org/10.1093/brain/awh369PubMedCrossRefGoogle Scholar
  57. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9(4), 304–313.  https://doi.org/10.1038/nrn2332CrossRefPubMedGoogle Scholar
  58. Jahanshahi, M., & Rothwell, J. (2000). Transcranial magnetic stimulation studies of cognition: An emerging field. Experimental Brain Research, 131, 1–9.  https://doi.org/10.1007/s002219900224CrossRefPubMedGoogle Scholar
  59. Jansen, A., Flöel, A., Van Randenborgh, J., Konrad, C., Rotte, M., Förster, A., Deppe, M., & Knecht, S. (2005). Crossed cerebro-cerebellar language dominance. Human Brain Mapping, 24(3), 165–172.  https://doi.org/10.1002/hbm.20077CrossRefGoogle Scholar
  60. Justus, T. (2004). The cerebellum and English grammatical morphology: Evidence from production, comprehension, and grammaticality judgements. Journal of Cognitive Neuroscience, 16(7), 1115–1130.  https://doi.org/10.1162/0898929041920513CrossRefPubMedPubMedCentralGoogle Scholar
  61. Khan, A. J., Nair, A., Keown, C. L., Datko, M. C., Lincoln, A. J., & Müller, R. (2015). Cerebro-cerebellar resting state functional connectivity in children and adolescents with autism spectrum disorder. Biological Psychiatry, 28, 625–634.Google Scholar
  62. Koch, G., Mori, F., Marconi, B., Codeca, C., Pecchioli, C., Salerno, S., Torriero, S., Lo Gerfo, E., Mir, P., Oliveri, M., & Caltagirone, C. (2008). Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clinical Neurophysiology, 119, 2559–2569.  https://doi.org/10.1016/j.clinph.2008.08.008PubMedCrossRefGoogle Scholar
  63. Lesage, E., Morgan, B. E., Olson, A. C., Meyer, A. S., & Miall, R. C. (2012). Cerebellar rTMS disrupts predictive language processing. Current Biology, 22, R794–R795.  https://doi.org/10.1016/j.cub.2012.07.006PubMedPubMedCentralCrossRefGoogle Scholar
  64. Leggio, M., & Molinari, M. (2015). Cerebellar sequencing: A trick for predicting the future. Cerebellum, 14, 35–38.  https://doi.org/10.1007/s12311-014-0616-xCrossRefPubMedGoogle Scholar
  65. Leggio, M., Silveri, M., Petrosini, L., & Molinari, M. (2000). Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. Journal of Neurology, Neurosurgery, and Psychiatry, 69, 102–106.  https://doi.org/10.1136/jnnp.69.1.102CrossRefPubMedPubMedCentralGoogle Scholar
  66. Leow, L. A., Marinovic, W., Riek, S., & Carroll, T. J. (2017). Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation. PLoS ONE, 12(7), e0179977.  https://doi.org/10.1371/journal.pone.0179977CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lupo, M., Troisi, E., Chiricozzi, F. R., Clausi, S., Molinari, M., & Leggio, M. (2015). Inability to process negative emotions in cerebellar damage: A functional transcranial Doppler sonographic study. Cerebellum, 14(6), 663–669.  https://doi.org/10.1007/s12311-015-0662-zPubMedCrossRefGoogle Scholar
  68. Lupo, M., Siciliano, L., Olivito, G., Masciullo, M., Bozzali, M., Molinari, M., Cercignani, M., Silveri, M. C., & Leggio, M. (2019). Non-linear spelling in writing after a pure cerebellar lesion. Neuropsychologia, 132, 107143.  https://doi.org/10.1016/j.neuropsychologia.2019.107143PubMedCrossRefGoogle Scholar
  69. Majerus, S., Laureys, S., Collette, F., Del Fiore, G., Degueldre, C., Luxen, A., Van der Linden, M., Maquet, P., & Metz-Lutz, M. (2003). Phonological short-term memory networks following recovery from Landau and Kleffner syndrome. Human Brain Mapping, 19(3), 133–144.  https://doi.org/10.1002/hbm.10113
  70. Macher, K., Boehringer, A., Villringer, A., & Pleger, B. (2013). Anodal cerebellar tDCS impairs verbal working memory. Clinical Neurophysiology, 124(10), e87–e88.  https://doi.org/10.1016/j.clinph.2013.04.128CrossRefGoogle Scholar
  71. Macher, K., Boehringer, A., Villringer, A., & Pleger, B. (2014). Cerebellar parietal connections underpin phonological storage. Journal of Neuroscience, 34(14), 5029–5037.  https://doi.org/10.1523/JNEUROSCI.0106-14.2014CrossRefPubMedGoogle Scholar
  72. Manto, M., & Mariën, P. (2015). Schmahmann's syndrome – identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias, 2, 2.  https://doi.org/10.1186/s40673-015-0023-1CrossRefPubMedPubMedCentralGoogle Scholar
  73. Marangolo, P., Fiori, V., Caltagirone, C., Pisano, F., & Priori, A. (2018). Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. Journal of Cognitive Neuroscience, 30(2), 188–199.  https://doi.org/10.1162/jocn_a_01201PubMedCrossRefGoogle Scholar
  74. Mariën, P., & Borgatti, R. (2018). Language and the cerebellum. Handbook of Clinical Neurology, 154, 181–202.  https://doi.org/10.1016/B978-0-444-63956-1.00011-4CrossRefPubMedGoogle Scholar
  75. Mariën, P., & Verhoeven, J. (2007). Cerebellar involvement in motor speech planning: Some further evidence from foreign accent syndrome. Folia Phoniatrica et Logopaedica, 59, 210–217.  https://doi.org/10.1159/000102933CrossRefPubMedGoogle Scholar
  76. Mariën, P., Saerens, J., Nanhoe, R., Moens, E., Nagels, G., Pickut, B. A., Dierckx, R. A., & De Deyn, P. P. (1996). Cerebellar induced aphasia: Case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. Journal of the Neurological Sciences, 144, 34–43.  https://doi.org/10.1016/S0022-510X(96)00059-7PubMedCrossRefGoogle Scholar
  77. Mariën, P., Engelborghs, S., Pickut, B., & De Deyn, P. P. (2000). Aphasia following cerebellar damage: Fact or fallacy? Journal of Neurolinguistics, 13, 145–171.  https://doi.org/10.1016/S0911-6044(00)00009-9CrossRefGoogle Scholar
  78. Mariën, P., Engelborghs, S., Fabbro, F., & De Deyn, P. P. (2001). The lateralized linguistic cerebellum: A review and a new hypothesis. Brain and Language, 79, 580–600.  https://doi.org/10.1006/brln.2001.2569CrossRefPubMedGoogle Scholar
  79. Mariën, P., Baillieux, H., De Smet, H. J., Engelborghs, S., Wilssens, I., Paquier, P., & De Deyn, P. P. (2009). Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: A case study. Cortex, 45, 527–536.  https://doi.org/10.1016/j.cortex.2007.12.010PubMedCrossRefGoogle Scholar
  80. Mariën, P., de Smet, E., De Smet, H. J., Wackenier, P., Dobbeleir, A., & Verhoeven, J. (2013). “Apraxic dysgraphia” in a 15-year-old left-handed patient: Disruption of the cerebello-cerebral network involved in the planning and execution of graphomotor movements. Cerebellum, 12, 131–139.  https://doi.org/10.1007/s12311-012-0395-1CrossRefGoogle Scholar
  81. McEvoy, S. D., Lee, A., Poliakov, A., Friedman, S., Shaw, D., Browd, S. R., Ellenbogen, R. G., Ojemann, J. G., & Mac Donald, C. L. (2016). Longitudinal cerebellar diffusion tensor imaging changes in posterior fossa syndrome. Neuroimage: Clinical, 12, 582–590.Google Scholar
  82. Merabet, L., & Pascual-Leone, A. (2008). Studies of crossmodal functions with TMS. In E. M. Wassermann, C. M. Epstein, U. Ziemann, et al. (Eds.), Oxford handbook of transcranial Stimulation (pp. 447–462). Oxford: Oxford University Press.Google Scholar
  83. Méndez Orellana, C., Visch-Brink, E., Vernooij, M., Kalloe, S., Satoer, D., Vincent, A., van der Lugt, A., & Smits, M. (2015). Crossed cerebrocerebellar language lateralization: An additional diagnostic feature for assessing atypical language representation in presurgical functional MR imaging. AJNR. American Journal of Neuroradiology, 36(3), 518–524.  https://doi.org/10.3174/ajnr.A4147PubMedCrossRefGoogle Scholar
  84. Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203–216.  https://doi.org/10.1080/00222895.1993.9942050CrossRefPubMedGoogle Scholar
  85. Miall, R. C., Antony, J., Goldsmith-Sumner, A., Harding, S. R., McGovern, C., & Winter J. L. (2016). Modulation of linguistic prediction by tDCS of the right lateral cerebellum. Neuropsychologia, 86, 103–109.  https://doi.org/10.1016/j.neuropsychologia.2016.04.022PubMedPubMedCentralCrossRefGoogle Scholar
  86. Moberget, T., & Ivry, R. B. (2016). Cerebellar contributions to motor control and language comprehension: Searching for common computational principles. Annals of the New York Academy of Sciences, 1369, 154–171.  https://doi.org/10.1111/nyas.13094CrossRefPubMedPubMedCentralGoogle Scholar
  87. Monti, A., Ferrucci, R., Fumagalli, M., Mameli, F., Cogiamanian, F., Ardolino, G., & Priori, A. (2013). Transcranial direct current stimulation (tDCS) and language. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 832–842.  https://doi.org/10.1136/jnnp-2012-302825CrossRefGoogle Scholar
  88. Mooshammer, C., Goldstein, L., Nam, H., McClure, S., Saltzman, E., & Tiede, M. (2012). Bridging planning and execution: Temporal planning of syllables. Journal of Phonetics, 40, 374–389.  https://doi.org/10.1016/j.wocn.2012.02.002PubMedPubMedCentralCrossRefGoogle Scholar
  89. Moretti, R., Torre, P., Antonello, R. M., Carraro, N., Zambito-Marsala, S., Ukmar, M. J., Capus, L., Gioulis, M., Cazzato, G., & Bava, A. (2002). Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Perceptual and Motor Skills, 94, 677–694.  https://doi.org/10.2466/pms.2002.94.2.677PubMedCrossRefGoogle Scholar
  90. Murdoch, B., & Whelan, B. M. (2007). Language disorders subsequent to left cerebellar lesions: A case for bilateral cerebellar involvement in language? Folia Phoniatrica et Logopaedica, 59, 184–189.  https://doi.org/10.1159/000102930CrossRefPubMedGoogle Scholar
  91. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–1901.  https://doi.org/10.1212/WNL.57.10.1899CrossRefPubMedGoogle Scholar
  92. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223.  https://doi.org/10.1016/j.brs.2008.06.004PubMedCrossRefGoogle Scholar
  93. Nitsche, M. A., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): A review. Experimental Neurology, 219, 14–19.  https://doi.org/10.1016/j.expneurol.2009.03.038CrossRefPubMedGoogle Scholar
  94. Nordmann, G., Azorina, V., Langguth, B., & Schecklmann, M. (2015). A systematic review of non-motor rTMS induced motor cortex plasticity. Frontiers in Human Neuroscience, 9, 416.  https://doi.org/10.3389/fnhum.2015.00416CrossRefPubMedPubMedCentralGoogle Scholar
  95. Oliveri, M., Bonnì, S., Turriziani, P., Koch, G., Lo Gerfo, E., Torriero, S., Vicario, C. M., Petrosini, L., & Caltagirone, C. (2009). Motor and linguistic linking of space and time in the cerebellum. PLoS ONE, 4(11), e7933.  https://doi.org/10.1371/journal.pone.0007933PubMedPubMedCentralCrossRefGoogle Scholar
  96. Olivito, G., Lupo, M., Iacobacci, C., Clausi, S., Romano, S., Masciullo, M., Molinari, M., Cercignani, M., Bozzali, M., & Leggio, M. (2017). Microstructural MRI basis of the cognitive functions in èatients with spinocerebellar ataxia type 2. Neuroscience, 366, 44–53.  https://doi.org/10.1016/j.neuroscience.2017.10.007PubMedCrossRefGoogle Scholar
  97. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953–965.Google Scholar
  98. Oulad Ben Taib, N., & Manto, M. (2013). Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plasticity, 2013, 1–12.  https://doi.org/10.1155/2013/613197CrossRefGoogle Scholar
  99. Parazzini, M., Rossi, E., Ferrucci, R., Liorni, I., Priori, A., & Ravazzani, P. (2014). Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clinical Neurophysiology, 125, 577–584.  https://doi.org/10.1016/j.clinph.2013.09.039PubMedCrossRefGoogle Scholar
  100. Pascual-Leone, A., Cohen, L. G., Shotland, L. I., Dang, N., Pikus, A., Wassermann, E. M., Brasil-Neto, J. P., Valls-Solé, J., & Hallett, M. (1992). No evidence of hearing loss in humans due to transcranial magnetic stimulation. Neurology, 42(3), 647–651.  https://doi.org/10.1016/j.brs.2014.01.056PubMedCrossRefGoogle Scholar
  101. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342–345.  https://doi.org/10.1038/362342a0CrossRefPubMedGoogle Scholar
  102. Paulus, W. (2003). Transcranial direct current stimulation (tDCS). Supplements to Clinical Neurophysiology, 56, 249–254.  https://doi.org/10.1016/S1567-424X(09)70229-6CrossRefPubMedGoogle Scholar
  103. Picazio, S., Oliveri, M., Koch, G., Caltagirone, C., & Petrosini, L. (2013). Cerebellar contribution to mental rotation: A cTBS study. Cerebellum, 12, 856–861.  https://doi.org/10.1007/s12311-013-0494-7PubMedCrossRefGoogle Scholar
  104. Pope, P. A., & Miall, R. C. (2015). Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulation, 5(2), 84–94.  https://doi.org/10.1016/j.brs.2012.03.006CrossRefGoogle Scholar
  105. Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2, 241–245.  https://doi.org/10.1016/j.brs.2009.02.004CrossRefPubMedGoogle Scholar
  106. Rahman, A., Toshev, P. K., & Bikson, M. (2014). Polarizing cerebellar neurons with transcranial direct current stimulation. Clinical Neurophysiology, 125(3), 435–438.  https://doi.org/10.1016/j.clinph.2013.10.003CrossRefPubMedGoogle Scholar
  107. Rami, L., Gironell, A., Kulisevsky, J., García-Sánchez, C., Berthier, M., & Estévez-González, A. (2003). Effects of repetitive transcranial magnetic stimulation on memory subtypes: A controlled study. Neuropsychologia, 41(14), 1877–1883.  https://doi.org/10.1016/S0028-3932(03)00131-3PubMedCrossRefGoogle Scholar
  108. Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306–320.  https://doi.org/10.1093/brain/awh685PubMedCrossRefGoogle Scholar
  109. Richter, S., Gerwig, M., Aslan, B., Wilhelm, H., Schoch, B., Dimitrova, A., Gizewski, E. R., Ziegler, W., Karnath, H., & Timmann, D. (2007). Cognitive functions in patients with MR-defined chronic focal cerebellar lesions. Journal of Neurology, 254(9), 1193–1203.Google Scholar
  110. Rogalewski, A., Breitenstein, C., Nitsche, M. A., Paulus, W., & Knecht, S. (2004). Transcranial direct current stimulation disrupts tactile perception. The European Journal of Neuroscience, 20(1), 313–316.  https://doi.org/10.1111/j.0953-816X.2004.03450.xPubMedCrossRefGoogle Scholar
  111. Roth, M. J., Synofzik, M., & Lindner, A. (2013). The cerebellum optimizes perceptual predictions about external sensory events. Current Biology, 23, 930–935.  https://doi.org/10.1016/j.cub.2013.04.027CrossRefPubMedGoogle Scholar
  112. Runnqvist, E., Bonnard, M., Gauvin, H. S., Attarian, S., Trébuchon, A., Hartsuiker, R. J., & Alario, F. (2016). Internal modeling of upcoming speech: A causal role of the right posterior cerebellum in non-motor aspects of language production. Cortex, 81, 203–214.  https://doi.org/10.1016/j.cortex.2016.05.008PubMedCrossRefGoogle Scholar
  113. Sandrini, M., Umiltà, C., & Rusconi, E. (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience and Biobehavioral Reviews, 35, 516–536.  https://doi.org/10.1016/j.neubiorev.2010.06.005CrossRefPubMedGoogle Scholar
  114. Schmahmann, J. D. (1996). From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Human Brain Mapping, 4, 174–198.  https://doi.org/10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0CrossRefPubMedGoogle Scholar
  115. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(4), 561–579.  https://doi.org/10.1093/brain/121.4.561CrossRefPubMedGoogle Scholar
  116. Schmahmann, J. D., Smith, E. E., Eichler, F. S., & Filley, C. M. (2008). Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Annals of the New York Academy of Sciences, 1142, 266–309.  https://doi.org/10.1196/annals.1444.017CrossRefPubMedPubMedCentralGoogle Scholar
  117. Schweizer, T. A., Alexander, M. P., Gillingham, B. A. S., Cusimano, M., & Stuss, D. T. (2010). Lateralized cerebellar contributions to word generation: A phonemic and semantic fluency study. Behavioural Neurology, 23, 31–37.  https://doi.org/10.3233/BEN-2010-0269
  118. Shimizu, H., Tsuda, T., Shiga, Y., Miyazawa, K., Onodera, Y., Matsuzaki, M., Nakashima, I., Furukawa, K., Aoki, M., Kato, H., Yamazaki, T., & Itoyama, Y. (1999). Therapeutic efficacy of transcranial magnetic stimulation for hereditary spinocerebellar degeneration. The Tohoku Journal of Experimental Medicine, 189, 203–211.  https://doi.org/10.1620/tjem.189.203PubMedCrossRefGoogle Scholar
  119. Shiga, Y., Tsuda, T., Itoyama, Y., Shimizu, H., Miyazawa, K.-I., Jin, K., & Yamazaki, T. (2002). Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 124–126.  https://doi.org/10.1136/jnnp.72.1.124CrossRefGoogle Scholar
  120. Silveri, M. C., Leggio, M. G., & Molinari, M. (1994). The cerebellum contributes to linguistic production: A case of agrammatic speech following a right cerebellar lesion. Neurology, 44, 2047–2050.  https://doi.org/10.1212/WNL.44.11.2047CrossRefPubMedGoogle Scholar
  121. Silveri, M. C., Misciagna, S., Leggio, M. G., & Molinari, M. (1999). Cerebellar spatial dysgraphia: Further evidence. Journal of Neurology, 246(4), 312–313.  https://doi.org/10.1007/s004150050353CrossRefPubMedGoogle Scholar
  122. Spencer, K. A., & Slocomb, D. L. (2007). The neural basis of ataxic dysarthria. Cerebellum, 6(1), 58–65.  https://doi.org/10.1080/14734220601145459CrossRefPubMedGoogle Scholar
  123. Starowicz-Filip, A., Chrobak, A. A., Moskała, M., Krzyżewski, R. M., Kwinta, B., Kwiatkowski, S., Milczarek, O., Rajtar-Zembaty, A., & Przewoźnik, D. (2017). The role of the cerebellum in the regulation of language functions. Psychiatria Polska, 51(4), 661–671.  https://doi.org/10.12740/PP/68547PubMedCrossRefGoogle Scholar
  124. Stoodley, C. J., & Schmahmann, J. D. (2009). The cerebellum and language: Evidence from patients with cerebellar degeneration. Brain and Language, 110, 149–153.  https://doi.org/10.1016/j.bandl.2009.07.006CrossRefPubMedGoogle Scholar
  125. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844.  https://doi.org/10.1016/j.cortex.2009.11.008CrossRefPubMedPubMedCentralGoogle Scholar
  126. Stoodley, C. J., MacMore, J. P., Makris, N., Sherman, J. C., & Schmahmann, J. D. (2016). Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. Neuroimage: Clinical, 12, 765–775.Google Scholar
  127. Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience (Palo Alto, CA), 32, 413–434.  https://doi.org/10.1146/annurev.neuro.31.060407.125606CrossRefGoogle Scholar
  128. Tedesco, A. M., Chiricozzi, F. R., Clausi, S., Lupo, M., Molinari, M., & Leggio, M. G. (2011). The cerebellar cognitive profile. Brain, 134, 3669–3683.  https://doi.org/10.1093/brain/awr266PubMedCrossRefGoogle Scholar
  129. Terrien, S., Gierski, F., Caillies, S., Baltazart, V., Portefaix, C., Pierot, L., & Besche-Richard, C. (2013). Neural substrates of forward and backward associative priming: a functional MRI study. Psychology, 4, 34–41.  https://doi.org/10.4236/psych.2013.410A007CrossRefGoogle Scholar
  130. Tomlinson, S., Davis, N., & Bracewell, M. (2013). Brain stimulation studies of non-motor cerebellar function: A systematic review. Neuroscience and Biobehavioral Reviews, 37, 766–789.  https://doi.org/10.1016/j.neubiorev.2013.03.001CrossRefPubMedGoogle Scholar
  131. Tomlinson, S., Davis, N., Morgan, H., & Bracewell, M. (2014). Cerebellar contributions to verbal working memory. Cerebellum, 13, 354–361.  https://doi.org/10.1007/s12311-013-0542-3CrossRefPubMedGoogle Scholar
  132. Turkeltaub, P. E., Swears, M. K., D’Mello, A. M., & Stoodley, C. J. (2016). Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restorative Neurology and Neuroscience, 34(4), 491–505.  https://doi.org/10.3233/RNN-150633CrossRefPubMedPubMedCentralGoogle Scholar
  133. Ugawa, Y., & Iwata, N. K. (2005). Cerebellar stimulation in normal subjects and ataxic patients. In M. Hallet & S. Chokroverty (Eds.), Magnetic stimulation in clinical neurophysiology (pp. 197–210). Philadelphia, PA: Elsevier.CrossRefGoogle Scholar
  134. Ugawa, Y., Genba-Shimizu, K., Rothwell, J. C., et al. (1994). Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Annals of Neurology, 36(1), 90–96.  https://doi.org/10.1002/ana.410360117PubMedCrossRefGoogle Scholar
  135. Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R., & Kanazawa, I. (1995). Magnetic stimulation over the cerebellum in humans. Annals of Neurology, 37, 703–713.  https://doi.org/10.1002/ana.410370603PubMedCrossRefGoogle Scholar
  136. Vallar, G., & Bolognini, N. (2011). Behavioural facilitation following brain stimulation: Implications for neurorehabilitation. Neuropsychological Rehabilitation, 21(5), 618–649.  https://doi.org/10.1080/09602011.2011.574050CrossRefPubMedGoogle Scholar
  137. van Dun, K., Bodranghien, F. C., Mariën, P., & Manto, M. U. (2016). tDCS of the cerebellum: Where do we stand in 2016? Technical issues and critical review of the literature. Frontiers in Human Neuroscience, 10, 199.  https://doi.org/10.3389/fnhum.2016.00199CrossRefPubMedPubMedCentralGoogle Scholar
  138. van Dun, K., Bodranghien, F., Manto, M., & Mariën, P. (2017). Targeting the cerebellum by noninvasive neurostimulation: A review. Cerebellum, 16(3), 695–741.  https://doi.org/10.1007/s12311-016-0840-7CrossRefPubMedGoogle Scholar
  139. van Dun, K., Mitoma, H., & Mario Manto, M. (2018). Cerebellar cortex as a therapeutic target for neurostimulation. Cerebellum, 17, 777–787.  https://doi.org/10.1007/s12311-018-0976-8CrossRefPubMedGoogle Scholar
  140. Verly, M., Verhoeven, J., Zink, I., Mantini , D., Peeters, R., Deprez, S., Emsell, L., Boets, B., Noens, I., Steyaert, J., Lagae, L., De Cock, P., Rommel, N., & Sunaert, S. (2014). Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum. Neuroimage: Clinical, 4, 374–382.  https://doi.org/10.1016/j.nicl.2014.01.008CrossRefGoogle Scholar
  141. Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews. Neuroscience, 1, 73–80.  https://doi.org/10.1038/35036239CrossRefPubMedPubMedCentralGoogle Scholar
  142. Woods, A .J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Cohen, L. G., Fregni, F., Herrmann, C. S., Kappenman, E. S., Knotkova, H., Liebetanz, D., Miniussi, C., Miranda, P. C., Paulus, W., Priori, A., Reato, D., Stagg, C., Wenderoth, N., & Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031–1048.  https://doi.org/10.1016/j.clinph.2015.11.012PubMedCrossRefGoogle Scholar

Further Reading

  1. Marangolo, P., Fiori, V., Caltagirone, C., et al. (2018). Transcranial cerebellar direct current stimulation enhances verb generation but not verb naming in poststroke aphasia. Journal of Cognitive Neuroscience, 30(2), 188–199.  https://doi.org/10.1162/jocn_a_01201CrossRefPubMedGoogle Scholar
  2. Turkeltaub, P. E., Swears, M. K., D'Mello, A. M., & Stoodley, C. J. (2016). Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restorative Neurology and Neuroscience, 34(4), 491–505.  https://doi.org/10.3233/RNN-150633CrossRefPubMedPubMedCentralGoogle Scholar
  3. van Dun, K., Mitoma, H., & Mario Manto, M. (2018). Cerebellar cortex as a therapeutic target for neurostimulation. Cerebellum, 17, 777–787.  https://doi.org/10.1007/s12311-018-0976-8CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maria Leggio
    • 1
    • 2
    Email author
  • Giusy Olivito
    • 1
    • 2
  • Michela Lupo
    • 2
  • Silvia Clausi
    • 2
  1. 1.Department of PsychologySapienza University of RomeRomeItaly
  2. 2.Ataxia LaboratoryIRCCS Fondazione Santa LuciaRomeItaly

Personalised recommendations