Treatment and Intervention Approaches for the Improvement of Language Abilities in Neurodegenerative Diseases

  • Christina ManouilidouEmail author
  • Michaela Nerantzini
Part of the Contemporary Clinical Neuroscience book series (CCNE)


This chapter discusses the current state of treatment and intervention approaches to language impairments resulting from neurodegenerative conditions such as Alzheimer’s disease (AD), mild cognitive impairment (MCI), and primary progressive aphasia (PPA). Traditionally, language therapy has focused on improving performance after stroke, while linguistic difficulties resulting from various neurodegenerative conditions have largely been left untreated. Despite the progressive nature of these conditions, current research has shown that language impairments associated with them are responsive to therapy, indicating the potential for neuroplasticity even in neurodegeneration. In this chapter, we present and discuss behavioral intervention methods targeting the word as well as the sentence level of impairment in the aforementioned conditions, as well as neuromodulatory techniques (repetitive transcranial magnetic stimulation, transcranial direct current stimulation) and their application in the domain of language impairments. Efficacy of treatment varies depending on the condition but also on the technique: therapy gains seem to be higher when it comes to AD as compared to MCI and when it comes to agrammatic (PPA-G) or logopenic PPA (PPA-L) as compared to semantic PPA (PPA-S). Moreover, neuromodulatory techniques may have longer-lasting effects relative to behavioral treatment, while combined interventions (behavioral and neuromodulatory) have produced more promising results, maximizing the efficacy of the intervention.



(Repetitive) transcranial magnetic stimulation


Alzheimer’s disease


Computerized cognitive training


Dorsolateral prefrontal cortex


Executive functions


Frontotemporal dementia


Left hemisphere


Mild cognitive impairment


Primary progressive aphasia


Agrammatic PPA


Logopenic PPA


Semantic PPA


Right hemisphere


Transcranial direct current stimulation



We would like to thank Georgios Argyropoulos and Ioannis Papakyritsis for thoroughly reading the manuscript. Writing of the chapter was partly supported by grant J6-1806 from ARRS (Slovenian Research Agency) awarded to Christina Manouilidou.


  1. Abel, S., Weiller, C., Huber, W., Willmes, K., & Specht, K. (2015). Therapy-induced brain reorganization patterns in aphasia. Brain, 138, 1097–1112.Google Scholar
  2. Adlam, A. L. R., Patterson, K., Rogers, T. T., Nestor, P. J., Salmond, C. H., Acosta-Cabronero, J., … Hodges, J. R. (2006). Semantic dementia and fluent primary progressive aphasia: Two sides of the same coin? Brain, 129, 3066–3080.PubMedCrossRefGoogle Scholar
  3. Ahmed, M. A., Darwish, E. S., Khedr, E. M., El Serogy, Y. M., & Ali, A. M. (2012). Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. Journal of Neurology, 259(1), 83–92.Google Scholar
  4. Alegret, M., Pereto, M., Perez, A., Valero, S., Espinosa, A., Ortega, G., … Boada, M. (2018). The role of verb fluency in the detection of early cognitive impairment in Alzheimer’s disease. Journal of Alzheimer’s Disease, 62(2), 611–619.PubMedCrossRefGoogle Scholar
  5. Albert, M., Moss, M. B., Blacker, D., Tanzi, R., & McArdle, J. J. (2007). Longitudinal change in cognitive performance among individuals with mild cognitive impairment. Neuropsychology, 21, 158–169.Google Scholar
  6. Altmann, L., Kempler, D., & Andersen, E. (2001). Speech errors in Alzheimer’s disease: Reevaluating morphosyntactic preservation. Journal of Speech, Language, & Hearing Research, 44, 1069–1082.Google Scholar
  7. Antczak, J., Kowalska, K., Klimkowicz-Mrowiec, A., Wach, B., Kasprzyk, K., Banach, M., … Słowik, A. (2018). Repetitive transcranial magnetic stimulation for the treatment of cognitive impairment in frontotemporal dementia: An open-label pilot study. Neuropsychiatric Disease & Treatment, 14, 749–755.CrossRefGoogle Scholar
  8. Ash, S., McMillan, C., Gunawardena, D., Avants, B., Morgan, B., Khan, A., & Grossman, M. (2010). Speech errors in progressive non-fluent aphasia. Brain & language, 113(1), 13–20.Google Scholar
  9. Auclair-Ouellet, N., Fossard, M., Houde, M., Laforce, R., & Macoir, J. (2016). Production of morphologically derived words in the semantic variant of primary progressive aphasia: Preserved decomposition and composition but impaired validation. Neurocase, 22(2), 170–178.Google Scholar
  10. Baddeley, A. (1996). Exploring the Central Executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5–28.CrossRefGoogle Scholar
  11. Baker, J. M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236.Google Scholar
  12. Barnes, D., Yaffe, K., Belfor, N., Jagust, W. J., DeCarli, C., Reed, B. R., & Kramer, J. H. (2009). Computer-based cognitive training for mild cognitive impairment: Results from a pilot randomized, controlled trial. Alzheimer’s Disease & Associated Disorders, 23(3), 205–210.Google Scholar
  13. Barwood, C. H., Murdoch, B. E., Whelan, B. M., Lloyd, D., Riek, S., O’ Sullivan, J. D., … Wong, A. (2011). Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. European Journal of Neurology, 18, 935–943.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Beeson, P. M., King, R. M., Bonakdarpour, B., Henry, M. L., Cho, H., & Rapcsak, S. Z. (2011). Positive effects of language treatment for the logopenic variant of primary progressive aphasia. Journal of Molecular Neuroscience, 45, 724–736.Google Scholar
  15. Benedet, M., Patterson, K., Gomez-Pastor, I., & Luisa-Garcia de la Rocha, M. (2006). “Non-semantic” aspects of language in semantic dementia: As normal as they’re said to be? Neurocase, 12, 15–26.Google Scholar
  16. Berthier, M. L., & Pulvermüller, F. (2011). Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nature Reviews in Neurology, 7(2), 86–97.Google Scholar
  17. Bier, N., Macoir, J., Gagnon, L., Desrosiers, J., Van der Linden, M., & Louveaux, S. (2009). Known, lost, and recovered: Efficacy of formal-semantic therapy and spaced retrieval method in a patient with semantic dementia. Aphasiology, 23(2), 210–235.Google Scholar
  18. Bier, N., Macoir, J., Joubert, S., Bottari, C., Chayer, C., Pigot, H., … SemAssist Team. (2011). Cooking “Shrimp a la Creole”: A pilot study of an ecological rehabilitation in semantic dementia. Neuropsychological Rehabilitation, 21(4), 455–483.PubMedCrossRefGoogle Scholar
  19. Bier, N., Brambati, S., Macoir, J., Paquette, G., Schmitz, X., Belleville, S., … Joubert, S. (2015). Relying on procedural memory to enhance independence in daily living activities: Smartphone use in a case of semantic dementia. Neuropsychological Rehabilitation, 25, 913–935.PubMedCrossRefGoogle Scholar
  20. Bilenko, N. Y., Grindrod, C. M., Myers, E. B., & Blumstein, S. E. (2009). Neural correlates of semantic competition during processing of ambiguous words. Journal of Cognitive Neuroscience, 21, 960–975.Google Scholar
  21. Boxer, A., Knopman, D., Kaufer, D., Grossman, M., Onyike, C., … Miller, B. L. (2013). Memantine in patients with frontotemporal lobar degeneration: A multicenter, randomized, double-blind, placebo-controlled trial. The Lancet Neurology, 12, 149–156.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Braaten, A. J., Parsons, T. D., McCue, R., Sellers, A., & Burns, W. J. (2006). Neurocognitive differential diagnosis of dementing diseases: Alzheimer’s dementia, vascular dementia, frontotemporal dementia and major depressive disorder. International Journal of Neuroscience, 116(11), 1271–1293.Google Scholar
  23. Brown-Schmidt, S. (2009). The role of executive function in perspective taking during online language comprehension. Psychonomic Bulletin Review, 16, 893–900.CrossRefGoogle Scholar
  24. Cadorio, I., Lousada, M., Martins, P., & Figueiredo, D. (2017). Generalization and maintenance of treatment gains in primary progressive aphasia (PPA): A systematic review. International Journal of Communication Disorders, 52(5), 543–560.Google Scholar
  25. Carthery-Goulart, M. T., Silveira, A. C., Machado, T. H., Mansur, L. L., Parente, M. A., Senaha, M. L., Brucki, S. M., & Nitrini, R. (2013). Nonpharmacological interventions for cognitive impairments following primary progressive aphasia. A systematic review of the literature. Dementia & Neuropsychologia, 7, 122–131.Google Scholar
  26. Cartwright, J., & Elliott, K. (2009). Promoting strategic television viewing in the context of progressive language impairment. Aphasiology, 23(2), 266–285.Google Scholar
  27. Cipriani, G., Bianchetti, A., & Trabucchi, M. (2006). Outcomes of a computer-based cognitive rehabilitation program on Alzheimer’s disease patients compared with those on patients affected by mild cognitive impairment. Archives Gerontology & Geriatrics, 43(3), 327–335.Google Scholar
  28. Cotelli, M., Manenti, R., Cappa, S. F., Geroldi, C., Zanetti, O., Rossini, P. M., et al. (2006). Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Archives of Neurology, 63(11), 1602–1604.PubMedCrossRefGoogle Scholar
  29. Cotelli, M., Manenti, R., Cappa, S. F., Zanetti, O., & Miniussi, C. (2008). Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. European Journal of Neurology, 15(12), 1286–1292.Google Scholar
  30. Cotelli, M., Calabria, M., Manenti, R., Rosini, S., Zanetti, O., Cappa, S. F., et al. (2011). Improved language performance in Alzheimer disease following brain stimulation. Journal of Neurology, Neurosurgery, & Psychiatry, 82(7), 794–797.CrossRefGoogle Scholar
  31. Cotelli, M., Calabria, M., Manenti, R., et al. (2012). Brain stimulation improves associative memory in an individual with amnestic mild cognitive impairment. Neurocase, 18, 217–223.PubMedCrossRefGoogle Scholar
  32. Cotelli, M., Manenti, R., Petesi, M., Brambilla, M., Cosseddu, M., Zanetti, O., et al. (2014). Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. Journal of Alzheimer’s Disease, 39(4), 799–808.PubMedCrossRefGoogle Scholar
  33. Copland, D. A., Sefe, G., Ashley, J., Hudson, C., & Chenery, H. J. (2009). Impaired semantic inhibition during lexical ambiguity repetition in Parkinson’s disease. Cortex, 45, 943–949.Google Scholar
  34. Crinion, J. (2016). Transcranial direct current stimulation as a novel method for enhancing aphasia treatment effects. European Psychologist, 21, 65–77.CrossRefGoogle Scholar
  35. Croot, K., Nickels, L., Laurence, F., & Manning, M. (2009). Impairment- and activity/participation-directed interventions in progressive language impairment: Clinical and theoretical issues. Aphasiology, 23, 125–160.Google Scholar
  36. Croot, K., Taylor, C., Abel, S., Jones, K., Krein, L., Hameister, I., et al. (2015). Measuring gains in connected speech following treatment for word retrieval: A study with two participants with primary progressive aphasia. Aphasiology, 29(11), 1265–1288.CrossRefGoogle Scholar
  37. Croot, K., Raiser, T., Taylor-Rubin, C., Ruggero, L., Ackl, N., Wlasich, E., et al. (2019). Lexical retrieval treatment in primary progressive aphasia: An investigation of treatment duration in a heterogeneous case series. Cortex, 115, 133–158.PubMedCrossRefGoogle Scholar
  38. Dadgar, H., Alaghband Rad, J., Khorrami, A., & Soleymani, Z. (2016). A review of the transcranial magnetic stimulation treatment in Autism spectrum disorders. Archives Neuroscience, 3(3), e30362.Google Scholar
  39. Decker, D. A., & Heilman, K. M. (2008). Steroid treatment of primary progressive aphasia. Archives Neurology, 65, 1533–1535.Google Scholar
  40. Demetriou, E., & Holtzer, R. (2017). Mild cognitive impairments moderate the effect of time on verbal fluency performance. Journal of the International Neuropsychological Society, 23(1), 44–55.Google Scholar
  41. D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37(11), 1303–1315.Google Scholar
  42. De Jager, C. A., Hogervorst, E., Combrinck, M., & Budge, M. M. (2003). Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer’s disease. Psychological Medicine, 33(6), 1039–1050.Google Scholar
  43. Dressel, K., Huber, W., Frings, L., Kummerer, D., Saur, D., Mader, I., … Abel, S. (2010). Model-oriented naming therapy in semantic dementia: A single-case fMRI study. Aphasiology, 24, 1537–1558.CrossRefGoogle Scholar
  44. Drucks, J., Masterson, J., Kopelman, M., Clare, L., Rose, A., & Rai, G. (2006). Is action naming better preserved (than object naming) in Alzheimer’s disease and why should we ask? Brain & Language, 98, 332–340.Google Scholar
  45. Duong, A., Whitehead, V., Hanratty, K., & Chertkow, H. (2006). The nature of lexico-semantic processing in deficits in mild cognitive impairment. Neuropsychologia, 44, 1928–1935.Google Scholar
  46. Elder, G. J., & Taylor, J. P. (2014). Transcranial magnetic stimulation and transcranial direct current stimulation: Treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimer’s Research & Therapy, 6, 74.Google Scholar
  47. Evans, W. S., Quimby, M., Dickey, M. W., & Dickerson, B. C. (2016). Relearning and retaining personally-relevant words using computer-based flashcard software in primary progressive aphasia. Frontiers in Human Neuroscience, 10, 561.Google Scholar
  48. Faria, A. V., Crinion, J., Tsapkini, K., Newhart, M., Davis, C., et al. (2013). Patterns of dysgraphia in primary progressive aphasia compared to post-stroke aphasia. Behavioral Neurology, 26, 21–34.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Farrajota, L., Maruta, C., Maroco, J., Martins, I. P., Guerreiro, M., & de Mendonca, A. (2012). Speech therapy in primary progressive aphasia: A pilot study. Dementia & Geriatric Cognitive Disorders Extra, 2, 321–331.Google Scholar
  50. Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behavioral Brain Research, 208, 311–318.Google Scholar
  51. Finocchiaro, C., Maimone, M., Brighina, F., Piccoli, T., Giglia, G., & Fierro, B. (2006). A case study of primary progressive aphasia: Improvement on verbs after rTMS treatment. Neurocase, 12, 317–321.Google Scholar
  52. Frattali, C. (2004). An errorless learning approach to treating dysnomia in frontotemporal dementia. Journal of Medical Speech-Language Pathology, 12, 11–24.Google Scholar
  53. Fridriksson, J. (2010). Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. Journal of Neuroscience, 30, 11558–11564.PubMedCrossRefGoogle Scholar
  54. Fridriksson, J., Hubbard, H. I., Hudspeth, S. G., Holland, A. L., Bonilha, L., Fromm, D., & Rorden, C. (2012). Speech entrainment enables patients with Broca’s aphasia to produce fluent speech. Brain, 135(Pt 12), 3815–3829.Google Scholar
  55. Fridriksson, J., Guo, D., Fillmore, P., Holland, A., & Rorden, C. (2013). Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain, 136, 3451–3460.Google Scholar
  56. Gervits, F., Ash, S., Diloyan, M., Morgan, B., Coslett, H., Grossman, M., et al. (2015). Transcranial direct current stimulation for the treatment of primary progressive aphasia. Neurology, 84(Suppl. 14), 212.Google Scholar
  57. Gervits, F., Ash, S., Coslett, B., Rascovsky, K., Grossman, M., & Hamilton, R. (2016). Transcranial direct current stimulation for the treatment of primary progressive aphasia: An open-label pilot study. Brain & Language, 162, 35–41.Google Scholar
  58. Gill, J., Shah-Basak, P., & Hamilton, R. (2015). It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulation, 8, 253–259.Google Scholar
  59. Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., Ogar, J. M., Phengrasamy, L., Rosen, H. J., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335–346.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76, 1006–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Graham, K. S., Patterson, K., Pratt, K. H., & Hodges, J. R. (1999). Relearning and subsequent forgetting of semantic category exemplars in a case of semantic dementia. Neuropsychology, 13(3), 359–380.Google Scholar
  62. Graham, K. S., Patterson, K., Pratt, K. H., & Hodges, J. R. (2001). Can repeated exposure to “forgotten” vocabulary help alleviate word-finding difficulties in semantic dementia? An illustrative case study. Neuropsychological Rehabilitation, 11(3–4), 429–454.Google Scholar
  63. Graham, N. (2014). Dysgraphia in primary progressive aphasia: Characterization of impairments and therapy options. Aphasiology, 28(8-9), 1092–1111.CrossRefGoogle Scholar
  64. Grossman, M. (2010). Primary progressive aphasia: Clinicopathological correlations. Nature Reviews Neurology, 6(2), 88–97.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Grossman, M. (2018). Linguistic aspects of primary progressive aphasia. Annual Review of Linguistics, 4, 377–403.PubMedCrossRefGoogle Scholar
  66. Hameister, I., Nickels, L., Abel, S., & Croot, K. (2017). “Do you have mowing the lawn”? Improvements in word retrieval and grammar following constraint-induced language therapy in primary progressive aphasia. Aphasiology, 31(3), 308–331.Google Scholar
  67. Hamilton, R. H., Chrysikou, E. G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain & Language, 118, 40–50.Google Scholar
  68. Harciarek, M., Sitek, E. J., & Kertesz, A. (2014). The patterns of progression in primary progressive aphasia—Implications for assessment and management. Aphasiology, 28(8-9), 964–980.Google Scholar
  69. Hattori, Y., Moriwaki, A., & Hori, Y. (1990). Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters, 116, 320–324.Google Scholar
  70. Heiss, W. D., Thiel, A., Kessler, J., & Herholz, K. (2003). Disturbance and recovery of language function: Correlates in PET activation studies. Neuroimage, 20, S42–S49.Google Scholar
  71. Henry, M. L., Meese, M. V., Truong, S., Babiak, M. C., Miller, B. L., & Gorno-Tempini, M. L. (2013). Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behavioural Neurology, 26(1– 2), 77–88.Google Scholar
  72. Henry, M., Hubbard, I., Grasso, S., Mandelli, M. L., Wilson, S., Sathishkumar, M., … Gorno-Tempini, M. L. (2018). Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia. Brain, 141, 1799–1814.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Heredia, C. G., Sage, K., Lambon Ralph, M. A., & Berthier, B. L. (2009). Relearning and retention of verbal labels in a case of semantic dementia. Aphasiology, 23(2), 192–209.Google Scholar
  74. Hillis, A. E., Tuffiash, E., & Caramazza, A. (2002). Modality-specific deterioration in naming verbs in nonfluent primary progressive aphasia. Journal of Cognitive Neuroscience, 14, 1099–1108.Google Scholar
  75. Hillis, A. E., Oh, S., & Ken, L. (2004). Deterioration of naming nouns versus verbs in primary progressive aphasia. Annals of Neurology, 55(2), 268–275.Google Scholar
  76. Hillis, A. E., Heidler-Gary, J., Newhart, M., Chang, S., Ken, L., & Bak, T. H. (2006). Naming and comprehension in primary progressive aphasia: The influence of grammatical word class. Aphasiology, 20(02-04), 246–256.Google Scholar
  77. Hoffman, P., Jefferies, E., & Lambon Ralph, M. (2010). Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: Convergent neuropsychological and repetitive TMS evidence. Journal of Neuroscience, 30, 15450–15456.Google Scholar
  78. Hung, J., Bauer, A., Grossman, M., Hamilton, R., Coslett, H. B., & Reilly, J. (2017). Semantic feature training in combination with transcranial direct current stimulation (tDCS) for progressive anomia. Frontiers in Human Neuroscience, 11, 253.Google Scholar
  79. Hupfeld, K. E., & Ketcham, C. J. (2016). Behavioral effects of transcranial direct current stimulation on motor and language planning in minimally verbal children with Autism Spectrum Disorder (ASD): Feasinility, limitations and future directions. Journal of Childhood & Developmental Disorders, 2, 3.Google Scholar
  80. Hussey, E., Teubner-Rhodes, S., Dougherty, M., Bunting, M., & Novick, J. (2010). Improving garden-path recovery in healthy adults through cognitive control training. Talk presented at the 16th Annual Conference on Architectures and Mechanisms for Language Processing, York, UK.Google Scholar
  81. Hussey, E. K., & Novick, J. M. (2012). The benefits of executive control training and the implications for language use. Frontiers in Psychology, 3, 158.Google Scholar
  82. Jefferies, E., Rogers, T. T., Hopper, S., & Lambon Ralph, M. A. (2010). “Pre-semantic” cognition revisited: Critical differences between semantic aphasia and semantic dementia. Neuropsychologia, 48, 248–261.Google Scholar
  83. Jefferies, E., Bott, S., Ehsan, S., & Lambon Ralph, M. A. (2011). Phonological learning in semantic dementia. Neuropsychologia, 49, 1208–1218.Google Scholar
  84. Johnson, N. A., Rademaker, A., Weintraub, S., Gitelman, D., Wienecke, C., & Mesulam, M. (2010). Pilot trial of memantine in primary progressive aphasia. Alzheimer’s Disease & Associated Disorders, 24, 308.Google Scholar
  85. Johnson, M., & Lin, F. (2014). Communication difficulty and relevant interventions in mild cognitive impairment: Implications for neuroplasticity. Topics in Geriatric Rehabilitation, 30(1), 18–34.Google Scholar
  86. Jokel, R., Rochon, E., & Leonard, C. (2006). Treating anomia in semantic dementia: Improvement, maintenance, or both? Neuropsychological Rehabilitation, 16(3), 241–256.Google Scholar
  87. Jokel, R., Cupit, J., Rochon, E., & Leonard, C. (2009). Relearning lost vocabulary in nonfluent progressive aphasia with MossTalk words. Aphasiology, 23(2), 175–191.Google Scholar
  88. Jokel, R., Rochon, E., & Anderson, N. D. (2010). Errorless learning of computer-generated words in a patient with semantic dementia. Neuropsychological Rehabilitation, 20(1), 16–41.Google Scholar
  89. Jokel, R., Graham, N. L., Rochon, E., & Leonard, C. (2014). Word retrieval therapies in primary progressive aphasia. Aphasiology, 28, 1038–1068.Google Scholar
  90. Kan, I., & Thompson-Schill, S. L. (2004). Selection from perceptual and conceptual representations. Cognitive, Affective and Behavioral Neuroscience, 4, 466–482.Google Scholar
  91. Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology. Learning, Memory & Cognition, 26(2), 336–358.Google Scholar
  92. Kavé, G., Heinik, J., & Biran, I. (2012). Preserved morphological processing in semantic dementia. Cognitive Neuropsychology, 29(7-8), 550–568.Google Scholar
  93. Kavé, G., & Levy, Y. (2003). Morphology in picture descriptions provided by persons with Alzheimer’s disease. Journal of Speech, Language, & Hearing Research, 46, 341–352.Google Scholar
  94. Kavé, G., & Dassa, A. (2018). Severity of Alzheimer’s disease and language features in picture descriptions. Aphasiology, 32(1), 27–40.Google Scholar
  95. Kavé, G., & Goral, M. (2018). Word retrieval in connected speech in Alzheimer’s disease: A review with meta-analyses. Aphasiology, 32(1), 4–26.Google Scholar
  96. Kensinger, E. A., Shearer, D. K., Locascio, J. J., Growdon, J. H., & Corkin, S. (2003). Working memory in mild Alzheimer’s disease and early Parkinson’s disease. Neuropsychology, 17(2), 230–239.Google Scholar
  97. Kertesz, A., Morlog, D., Light, M., Blair, M., Davidson, W., Jesso, S., et al. (2008). Galantamine in frontotemporal dementia and primary progressive aphasia. Dementia & Geriatric Cognitive Disorders, 25, 178185.PubMedCrossRefGoogle Scholar
  98. Khanna, M. M., & Boland, J. E. (2010). Children’s use of language context in lexical ambiguity resolution. The Quarterly Journal of Experimental Psychology, 63, 160–193.Google Scholar
  99. Kim, M., & Thompson, C. (2004). Verb deficits in Alzheimer’s disease and agrammatism: Implications for lexical organization. Brain & Language, 88(1), 1–20.Google Scholar
  100. Kiran, S., Meier, E. L., Kapse, K. J., & Glynn, P. A. (2015). Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Frontiers in Human Neuroscience, 9, 316.Google Scholar
  101. Kiran, S., & Thompson, C. (2019). Neuroplasticity of language; networks in aphasia: Advances, updates and future challenges. Frontiers in Neurology, 10, 295.Google Scholar
  102. Kordouli, K., Manouilidou, C., Stavrakaki, S., Mamouli, D., & Ioannidis, P. (2018). Compound production in agrammatism: Evidence from stroke-induced and primary progressive aphasia. Journal of Neurolinguistics, 47, 71–90.Google Scholar
  103. Krajenbrink, T., Croot, K., Taylor, C., & Nickels, L. (2016). Treatment of spoken and written word retrieval in primary progressive aphasia. Conference abstract: 54th annual academy of aphasia meeting. Frontiers of Psychology.
  104. Kuo, M. F., Paulus, W., & Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage, 85(3), 948–960.Google Scholar
  105. Lambon Ralph, M. A., Patterson, K., Graham, N., Dawson, K., & Hodges, J. R. (2003). Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer’s disease: A cross-sectional and longitudinal study of 55 cases. Brain, 126(Pt11), 2350–2362.Google Scholar
  106. Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125, 2238–2247.Google Scholar
  107. Lindenboom, J., & Weinstein, H. (2004). Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease and vascular cognitive impairment. European Journal of Pharmacology, 19(1-3), 83–86.Google Scholar
  108. Louis, M., Espesser, R., Rey, V., Daffaure, V., Cristo, A. D., & Habib, M. (2001). Intensive training of phonological skills in progressive aphasia: A model of brain plasticity in neurodegenerative disease. Brain & Cognition, 46, 197–201.Google Scholar
  109. Machado, T. H., Campanha, A. C., Caramelli, P., & Carthery-Goulart, M. T. (2014). Brief intervention for agrammatism in Primary Progressive Nonfluent Aphasia. Dementia & Neuropsychologia, 8(3), 291–296.Google Scholar
  110. Manouilidou, C., & de Almeida, R. (2009). Linguistic canonicity and verb deficits in Alzheimer’s disease. In S. Featherston & S. Winkler (Eds.), The fruits of empirical linguistics, Volume 1: The process (pp. 123–150). Berlin: De Gruyter.Google Scholar
  111. Manouilidou, C., de Almeida, R., Schwartz, G., & Nair, N. P. V. (2009). Thematic roles in Alzheimer’s disease: Hierarchy violations in psychological predicates. Journal of Neurolinguistics, 22(2), 167–186.Google Scholar
  112. Manouilidou, C., Dolenc, B., Marvin, T., & Pirtošek, Z. (2016a). Processing complex pseudo-words in mild cognitive impairment: The interaction of preserved morphological rule knowledge with compromised cognitive ability. Clinical Linguistics & Phonetics, 30(1), 49–67.Google Scholar
  113. Manouilidou, C., Nerantzini, M., Dougherty, B., & Thompson, C. K. (2016b). Processing complex pseudo-words in primary progressive aphasia and agrammatic aphasia. Stem-, Spraak-en Taalpathologie, 21(S01), 14–17.Google Scholar
  114. Marcotte, K., & Ansaldo, A. I. (2010). The neural correlates of semantic feature analysis in chronic aphasia: Discordant patterns according to the etiology. Thieme: Seminars in Speech and Language, 31(1), 052–063.Google Scholar
  115. Martin, P. I., Naeser, M. A., Ho, M., Doron, K. W., Kurland, J., Kaplan, J., et al. (2009). Overt naming fMRI pre- and post-TMS: Two nonfluent aphasia patients, with and without improved naming post-TMS. Brain & Language, 111, 20–35.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Maruta, C., Pereira, T., Madeira, S. C., De Mendonça, A., & Guerreiro, M. (2015). Classification of primary progressive aphasia: Do unsupervised data mining methods support a logopenic variant? Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 16(3-4), 147–159.Google Scholar
  117. Masterson, J., Druks, J., Kopelman, M., Clare, L., Garley, C., & Hayes, M. (2007). Selective naming (and comprehension) deficits in Alzheimer’s disease. Cortex, 43, 921–934.Google Scholar
  118. Mayberry, E., Sage, K., Ehsan, S., & Lambon Ralph, M. (2011). Relearning in semantic dementia reflects contributions from both medial temporal lobe episodic and degraded neocortical semantic systems: Evidence in support of the complementary learning systems theory. Neuropsychologia, 49, 3591–3598.Google Scholar
  119. McNeil, M., Small, S., Masterson, R., & Fossett, T. (1995). Behavioral and pharmacological treatment of lexical-semantic deficits in a single patient with primary progressive aphasia. American Journal of Speech-Language Pathology, 4(4), 76–87.Google Scholar
  120. Meinzer, M., & Breitenstein, C. (2008). Functional imaging studies of treatment-induced recovery in chronic aphasia. Aphasiology, 22(12), 1251–1268.Google Scholar
  121. Menke, R., Meinzer, M., Kugel, H., Deppe, M., Baumgartner, A., Schiffbauer, H., et al. (2009). Imaging short- and long-term training success in chronic aphasia. BMC Neuroscience, 10, 118.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mesulam, M. M., Wieneke, C., Rogalski, E., Cobia, D., Thompson, C., & Weintraub, S. (2009). Quantitative template for subtyping primary progressive aphasia. Archives of Neurology, 66(12), 1545–1551.Google Scholar
  123. Mesulam, M. M., Wieneke, C., Thompson, C., Rogalski, E., & Weintraub, S. (2012). Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain, 135(5), 1537–1553.Google Scholar
  124. Mesulam, M. M. (2013). Primary progressive aphasia. A dementia of the language network. Dementia & Neuropsychologia, 7, 29.CrossRefGoogle Scholar
  125. Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Annual Neurology, 11, 592–598.PubMedCrossRefGoogle Scholar
  126. Meteyard, L., & Patterson, K. (2009). The relation between content and structure in language production: An analysis of speech errors in semantic dementia. Brain & Language, 110(3), 121–134.Google Scholar
  127. Meyer, A., Snider, S., Eckmann, C., & Friedman, R. (2015). Prophylactic treatments for anomia in the logopenic variant of primary progressive aphasia: Cross-language transfer. Aphasiology, 29, 1–20.Google Scholar
  128. Meyer, A. M., Tippett, D. C., Turner, R. S., & Friedman, R. B. (2018). Long-term maintenance of anomia treatment effects in primary progressive aphasia. Neuropsychological Rehabilitation, 29(9), 1439–1463.Google Scholar
  129. Moriwaki, A. (1991). Polarizing currents increase noradrenaline-elicited accumulation of cyclic AMP in rat cerebral cortex. Brain Research, 544, 248–252.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Musso, M., Weiller, C., Kiebel, S., Muller, S. P., Bulau, P., & Rijntjes, M. (1999). Training-induced brain plasticity in aphasia. Brain, 122(Pt 9), 1781–1790.Google Scholar
  131. Naeser, M. A., Martin, P. I., Nicholas, M., Baker, E. H., Seekins, H., Helm-Estabrooks, N., et al. (2005). Improved naming after TMS treatments in a chronic, global aphasia patient–case report. Neurocase, 11, 182–193.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Newhart, M., Davis, C., Kannan, V., Heidler-Gary, J., Cloutman, L., & Hillis, A. E. (2009). Therapy for naming deficits in two variants of primary progressive aphasia. Aphasiology, 23, 823–834.Google Scholar
  133. Norise, C., & Hamilton, R. (2017). Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: Parallels, differences, and lessons learned. Frontiers in Human Neuroscience, 10, 675.Google Scholar
  134. Novick, J., Kan, I., Trueswell, J., & Thompson-Schill, S. (2009). A case for conflict across multiple domains: Memory and language impairments following damage to ventrolateral prefrontral cortex. Cognitive Neuropsychology, 26, 527–567.Google Scholar
  135. Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Re-examining the role of Broca’s area in sentence comprehension. Cognitive, Affective, and Behavioral Neuroscience, 5(3), 263–281.Google Scholar
  136. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives Neurology, 58(12), 1985–1992.PubMedCrossRefGoogle Scholar
  137. Pini, L., Manenti, R., Cotelli, M., Pizzini, F., Frisoni, G., & Pievani, M. (2019). Non-Invasive brain stimulation in Dementia: A complex network story. Neuro-Degenerative Diseases, 18, 281–301.Google Scholar
  138. Pulvermüller, F., Neininger, B., Elbert, T., Mohr, B., Rockstroh, B., Koebbel, P., & Taub, E. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32(7), 1621–1626.Google Scholar
  139. Rapp, B., & Glucroft, B. (2009). The benefits and protective effects of behavioral treatment for dysgraphia in a case of primary progressive aphasia. Aphasiology, 23, 236–265.Google Scholar
  140. Reed, D. A., Johnson, N. A., Thompson, C., Weintraub, S., & Mesulam, M. M. (2004). A clinical trial of bromocriptine for treatment of primary progressive aphasia. Annals of Neurology, 56, 750.Google Scholar
  141. Ren, C. L., Zhang, G. F., Xia, N., Jin, C. H., Zhang, X. H., Hao, J. F., et al. (2014). Effect of low-frequency rTMS on aphasia in stroke patients: A meta-analysis of randomized controlled trials. PLoS ONE, 9(7), e102557.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Robinson, K. M., Grossman, M., White-Devine, T., & D’Esposito, M. (1996). Category-specific difficulty naming with verbs in Alzheimer’s disease. Neurology, 47, 178–182.Google Scholar
  143. Rozzini, L., Costardi, D., Chilovi, B. V., Franzoni, S., Trabucchi, M., & Padovani, A. (2007). Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. International Journal of Geriatrics & Psychiatry, 22(4), 356–360.Google Scholar
  144. Sarasso, S., Santhanam, P., Määtta, S., Poryazova, R., Ferrarelli, F., Tononi, G., et al. (2010). Non-fluent aphasia and neural reorganization after speech therapy: Insights from human sleep electrophysiology and functional magnetic resonance imaging. Archives Italiennes de Biologie, 148, 271–278.Google Scholar
  145. Salehi, M., Reisi, M., & Ghasisin, L. (2017). Lexical retrieval or semantic knowledge? Which one causes naming errors in patients with mild and moderate Alzheimer’s disease? Dementia and Geriatric Cognitive Disorders, 7, 419–429.Google Scholar
  146. Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., et al. (2006). Dynamics of language reorganization after stroke. Brain, 129, 1371–1384.CrossRefPubMedGoogle Scholar
  147. Savage, S. A., Piguet, O., & Hodges, J. R. (2014). Giving words new life: Generalization of word retraining outcomes in semantic dementia. Journal of Alzheimer’s Disease, 40(2), 309–317.Google Scholar
  148. Schneider, S., Thompson, C., & Luring, B. (1996). Effects of verbal plus gestural matrix training on sentence production in a patient with primary progressive aphasia. Aphasiology, 10(3), 297–317.Google Scholar
  149. Schnur, T., Schwartz, M., Kimberg, D., Hirshom, E., Cosleft, H., & Thompson-Schill, S. (2009). Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. PNAS, 106, 322–327.Google Scholar
  150. Senaha, M., Brucki, S., & Nitrini, R. (2010). Rehabilitation in semantic dementia: Study of the effectiveness of lexical re-acquisition in three patients. Dementia & Neuropsychologia, 4, 306–312.Google Scholar
  151. Silagi, M. L., Bertolucci, P. H., & Ortiz, K. Z. (2015). Naming ability in patients with mild to moderate Alzheimer’s disease: What changes occur with the evolution of the disease? Clinics (Sao Paulo, Brazil), 70(6), 423–428.Google Scholar
  152. Snyder, H., Carrillo, M., Grodstein, F., Henriksen, K., Jeromin, A., Lovestone, S., et al. (2014). Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dementia, 10(1), 109–114.CrossRefGoogle Scholar
  153. Sokhadze, E. M., El-Baz, A. S., Sears, L. L., Opris, I., & Casanova, M. F. (2014). rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in Systems Neuroscience, 8, 134.Google Scholar
  154. Summers, M. J., & Saunders, N. L. (2012). Neuropsychological measures predict decline to Alzheimer’s dementia from mild cognitive impairment. Neuropsychology, 26(4), 498–508.Google Scholar
  155. Talassi, E., Guerreschi, M., Feriani, M., Fedi, V., Bianchetti, A., & Trabucchi, M. (2007). Effectiveness of a cognitive rehabilitation program in mild dementia (MD) and mild cognitive impairment (MCI): A case control study. Archives Gerontology & Geriatrics, 44(Suppl 1), 391–399.Google Scholar
  156. Taler, V., & Jarema, G. (2006). On-line lexical processing in AD and MCI: An early measure of cognitive impairment? Journal of Neurolinguistics, 19(1), 38–55.Google Scholar
  157. Taler, V., & Philips, N. A. (2008). Language performance in Alzheimer’s disease and mild cognitive impairment: A comparative review. Journal of Clinical & Experimental Neuropsychology, 30(5), 501–556.Google Scholar
  158. Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Reviews in Neuroscience, 3(3), 228–236.Google Scholar
  159. Tippett, D. C., Hillis, A. E., & Tsapkini, K. (2015). Treatment of primary progressive aphasia. Current Treatment Options in Neurology, 17, 362–362.Google Scholar
  160. Thompson, C. K., Cho, S., Hsu, C., Wieneke, C., Rademaker, A., Weitner, B. B., et al. (2012). Dissociations between fluency and agrammatism in primary progressive aphasia. Aphasiology, 26, 20–43.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Thompson, C. K., Lukic, S., King, M. C., Mesulam, M. M., & Weintraub, S. (2012). Verb and noun deficits in stroke-induced and primary progressive aphasia: The Northwestern Naming Battery. Aphasiology, 26(5), 632–655.Google Scholar
  162. Thompson, C. K., Meltzer-Asscher, A., Cho, S., Lee, J., Wieneke, C., Weintraub, S., & Mesulam, M. M. (2013). Syntactic and morphosyntactic processing in stroke-induced and primary progressive aphasia. Behavioral Neurology, 26(1-2), 35–54.Google Scholar
  163. Thompson, C. K., & Mack, J. E. (2014). Grammatical impairments in PPA. Aphasiology, 28(8–9), 1018–1037.Google Scholar
  164. Trebbastoni, A., Raccah, R., de Lena, C., Zangen, A., & Inghilleri, M. (2013). Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimulation, 6(4), 545–553.Google Scholar
  165. Trebbastoni, A., Pichiorri, F., D’Antonio, F., Campanelli, A., Onesti, E., Ceccanti, M., … Inghilleri, M. (2016). Altered cortical synaptic plasticity in response to 5-Hz repetitive transcranial magnetic stimulation as a new electrophysiological finding in amnestic mild cognitive impairment converting to Alzheimer’s disease: Results from a 4-year prospective cohort study. Frontiers in Aging Neuroscience, 7, 253.Google Scholar
  166. Tsagaris, K. Z., Labar, D. R., & Edwards, D. J. (2016). A framework for combining rTMS with behavioral therapy. Frontiers in Systems Neuroscience, 10, 82.Google Scholar
  167. Tsapkini, K., & Hillis, A. E. (2013). Spelling intervention in post-stroke aphasia and primary progressive aphasia. Behavioral Neurology, 26, 55–66.Google Scholar
  168. Tsapkini, K., Frangakis, C., Gomez, Y., Davis, C., & Hillis, A. E. (2014). Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. Aphasiology, 28(8-9), 1112–1130.Google Scholar
  169. van den Noort, M., Struys, E., & Bosch, P. (2015). Transcranial magnetic stimulation research on reading and dyslexia: A new clinical intervention technique for treating dyslexia? Neuroimmunol Neuroinflammation, 2, 145–152.Google Scholar
  170. Visser, P. J., Verhey, F., Knol, D. L., Scheltens, P., et al. (1999). Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurology, 8(7), 619–627.Google Scholar
  171. Vogel, A., Hasselbalch, S. G., Gade, A., Ziebell, M., & Waldemar, G. (2005). Cognitive and functional neuroimaging correlates for anosognosia in mild cognitive impairment and Alzheimer’s disease. International Journal of Geriatric Psychiatry, 20, 238–246.Google Scholar
  172. Walenski, M., Sosta, K., Cappa, S., & Ullman, M. (2009). Deficits on irregular verbal morphology in Italian-speaking Alzheimer’s disease patients. Neuropsychologia, 47, 1245–1255.Google Scholar
  173. Wang, J., Wu, D., Chen, Y., Yuan, Y., & Zhang, M. (2013). Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neuroscience Letters, 549, 29–33.Google Scholar
  174. Wassermann, E. M., & Grafman, J. (2005). Recharging cognition with DC brain polarization. Trends in Cognitive Sciences, 9(11), 503–505.Google Scholar
  175. Wenisch, E., Cantegreil-Kallen, I., De Rotrou, J., Garrigue, P., Moulin, F., Batouche, F., … Rigaud, A. S. (2007). Cognitive stimulation intervention for elders with mild cognitive impairment compared with normal aged subjects: Preliminary results. Aging Clinical & Experimental Research, 19(4), 316–322.PubMedCrossRefGoogle Scholar
  176. Whatmough, C., & Chertkow, H. (2002). Category-specific recognition impairments in Alzheimer’s disease. In E. Forde & G. Humphreys (Eds.), Category specificity in brain and mind (pp. 181–210). London: Psychology Press.Google Scholar
  177. Whitworth, A., Cartwright, J., Beales, A., Leitão, S., Panegyres, P., & Kane, R. (2018). Taking words to a new level: A preliminary investigation of discourse intervention in primary progressive aphasia. Aphasiology, 32(11), 1284–1309.Google Scholar
  178. Wilkinson, C., & Murphy, E. (2016). Joint interventions in Autism spectrum disorder: Relating oscillopathies and syntactic deficits. UCL Working Papers in Linguistics, 28, 1–7.Google Scholar
  179. Wilson, R. S., Leurgans, S. E., Boyle, P. A., & Bennett, D. A. (2011). Cognitive decline in prodromal Alzheimer’s disease and mild cognitive impairment. Archives of Neurology, 68, 251–356.Google Scholar
  180. Wilson, R., Segawa, E., Boyle, P., Anagnos, S., Hizel, L., & Bennett, D. (2013). The natural history of cognitive decline in Alzheimer’s disease. Psychology of Aging, 27(4), 1008–1017.Google Scholar
  181. Wilson, S. M., Dronkers, N. F., Ogar, J. M., Jang, J., Growdon, M. E., Agosta, F., et al. (2010). Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. Journal of Neuroscience, 30(50), 16845–16854.PubMedCrossRefGoogle Scholar
  182. Wilson, S. M., Brandt, T. H., Henry, M. L., Babiak, M., Ogar, J. M., Salli, C., et al. (2014). Inflectional morphology in primary progressive aphasia: An elicited production study. Brain & language, 136, 58–68.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Winhuisen, L., Thiel, A., Shumacher, B., Kesler, J., Ridolf, J., Haupt, W. F., & Heiss, W. D. (2007). The right inferior frontal gyrus and post-stroke aphasia: A follow-up investigation. Stroke, 38(4), 1286–1292.Google Scholar
  184. Zhao, Y., & Li, H. (2017). Neuropsychological intervention of minimal cognitive impairment including language deficits. European Review for Medical & Pharmacological Sciences, 21(4 Suppl), 58–64.Google Scholar

Further Reading

  1. Cadorio, I., Lousada, M., Martins, P., & Figueiredo, D. (2017). Generalization and maintenance of treatment gains in primary progressive aphasia (PPA): A systematic review. International Journal of Communication Disorders, 52(5), 543–560.CrossRefGoogle Scholar
  2. Fyndanis, V., Manouilidou, C., Koufou, E., Karampekios, S., & E-M. Tsapakis. (2013). Agrammatic patterns in Alzheimer’s disease: evidence from Tense, Agreement and Aspect. Aphasiology27(2), 178–200.Google Scholar
  3. Joubert, S.,  Brambati, S. M., Ansado, J., Barbeau, E. J., Felician, O., Didic, M., Lacombe, J., Goldstein, R., Chayer, C., & Kergoat, M-J. (2010). The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia 48(4), 978–988.Google Scholar
  4. Manouilidou, C., Kordouli, K., Papanagiotou, A., Messinis, L., & Papathanassopoulos, P. (2014). Lexical-semantic deficits in Mild Cognitive Impairment: the case of abstract vs. concrete nouns. Stem-, Spraak-en Taalpathologie 19(S01), 92–95.Google Scholar
  5. Norise, C., & Hamilton, R. (2017). Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: Parallels, differences, and lessons learned. Frontiers in Human Neuroscience, 10, 675.Google Scholar
  6. Patterson, K., Ralph, M. A. L., Jefferies, E., Woollams, A., Jones, R., Hodges, J. R., & Rogers, T. T. (2006). “Presemantic” cognition in semantic dementia: Six deficits in search of an explanation. Journal of Cognitive Neuroscience 18(2), 169–183.Google Scholar
  7. Tippett, D. C., Hillis, A. E., & Tsapkini, K. (2015). Treatment of primary progressive aphasia. Current Treatment Options in Neurology, 17, 362–362.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Comparative and General Linguistics, Faculty of ArtsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Philology, School of PhilosophyUniversity of IoanninaIoanninaGreece

Personalised recommendations