Optical and Structural Properties of Nitride Based Nanostructures

  • Frank Bertram
  • Christoph Berger
  • Jürgen Christen
  • Holger Eisele
  • Ludwig A. Th. Greif
  • Axel HoffmannEmail author
  • Janina Maultzsch
  • Marcus Müller
  • Emanuele Poliani
  • Gordon Schmidt
  • Peter Veit
  • Markus R. Wagner
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 194)


Advanced characterization methods with nanoscale resolution are powerful tools in order to overcome the continuing challenges in the optimization of nitride semiconductor nanostructures for more efficient nanophotonic devices in the UV and green spectral range. This chapter is devoted to the study of optical, electronic, and structural properties of these nitride based nanostructures. In the first part, we discuss several state-of-the-art nanoscale characterization techniques including scanning transmission electron microscopy cathodoluminescence (STEM-CL), tip-enhanced Raman spectroscopy (TERS), micro-photoluminescence (µPL), X-ray diffraction (XRD), and scanning tunneling microscopy and spectroscopy (STM/STS). This selection of complementary microscopic and spectroscopic techniques provides unique insights into a multitude of nanostructure properties such as charge carrier excitation, relaxation, diffusion, and recombination dynamics, vibrational and structural properties including strain, segregation, as well as clustering, and surface and interface morphology. In the second part, we apply and combine these techniques to obtain detailed information on nanoscale properties of nitride based micro-columns, quantum wires, and heterostructures. The study of these nitride nanostructures provides not only insight into device limitations, but also contributes to the fundamental understanding of structural and optical properties of III-nitride nanostructures.



We gratefully acknowledge the German Research Foundation (DFG) for financial support within the Research Instrumentation Program INST 272/148-1, the Collaborative Research Center SFB 787 “Semiconductor Nanophotonics: Materials, Models, Devices”.

Many thanks to Silke Petzold (University of Magdeburg) for her work regarding the sample preparation.


  1. 1.
    Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Arakawa, A. Yariv, IEEE J. Quantum Electron. QE-22, 1887 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    A. Yariv, Appl. Phys. Lett. 53, 1033 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    S.J. Pennycook, A. Howie, Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 41(6), 809 (1980)ADSGoogle Scholar
  6. 6.
    P.M. Petroff, R.A. Logan, A. Savage, J. Microsc. 118(3), 255 (1980)CrossRefGoogle Scholar
  7. 7.
    S.H. Roberts, J.W. Steeds, J. Cryst. Growth 59(1–2), 312 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    N. Yamamoto, J.C.H. Spence, D. Fathy, Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 49(6), 609–629 (1984)ADSGoogle Scholar
  9. 9.
    T. Mitsui, N. Yamamoto, K. Takemoto, O. Nittono, Jpn. J. Appl. Phys. 33(3), L342 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    X.H. Wu, C.R. Elsass, A. Abare, M. MacK, S. Keller, P.M. Petroff, S.P. Denbaars, J.S. Speck, S.J. Rosner, Appl. Phys. Lett. 72(6), 692 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    R. Gómez-Medina, N. Yamamoto, M. Nakano, F.J.G. De Abajo, New J. Phys. 10, 105009 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S.K. Lim, M. Brewster, F. Qian, Y. Li, C.M. Lieber, S. Gradečak, Nano Lett. 9(11), 3940 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    L.F. Zagonel, S. Mazzucco, M. Tence, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F.H. Julien, R. Songmuang, M. Kociak, Nano Lett. 11(2), 568 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J.T. Griffiths, S. Zhang, B. Rouet-Leduc, W.Y. Fu, A. Bao, D. Zhu, D.J. Wallis, A. Howkins, I. Boyd, D. Stowe, M.J. Kappers, C.J. Humphreys, R.A. Oliver, Nano Lett. 15(11), 7639 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kociak, L.F. Zagonel, Ultramicroscopy 176, 112 (2017)CrossRefGoogle Scholar
  16. 16.
    H.P. Strunk, M. Albrecht, H. Scheel, J. Microsc. 224(1), 79 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J.I. Deitz, A.T.M.G. Sarwar, S.D. Carnevale, T.J. Grassman, R.C. Myers, D.W. McComb, Microsc. Microanal. 24(2), 93 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    M. von Ardenne, Das Elektronen-Rastermikroskop. Theoretische Grundlagen. Z. Phys. 109(9–10), 553–572 (1938)ADSCrossRefGoogle Scholar
  19. 19.
    M. von Ardenne, Das Elektronen-Rastermikroskop. Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938)Google Scholar
  20. 20.
    G. Schmidt, Optische Nanocharakterisierung GaN-basierter Quantenstrukturen für Mikrokavitäten. Doctoral thesis, Otto-von-Guericke-University Magdeburg, Magdeburg, 2017Google Scholar
  21. 21.
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, R.J.B. Reed, Scan. Electron Microsc. 1, 315 (1977)Google Scholar
  22. 22.
    L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation. 36 of Springer Series in Optical Sciences, 5th edn. (Springer, New York, 2008)Google Scholar
  23. 23.
    D.B. Williams, C.B. Carter, J.C.H. Spence, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd edn. (Springer, New York, 2009)Google Scholar
  24. 24.
    S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011)CrossRefGoogle Scholar
  25. 25.
    J. Cowley, Y. Huang, Ultramicroscopy 40(2), 171 (1992)CrossRefGoogle Scholar
  26. 26.
    M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, J. Christen, M. Brandt, M. Lorenz, M. Grundmann, F.H. Teherani, D.C. Look, D.J. Rogers, in SPIE OPTO, SPIE Proceedings (SPIE, 2012), p. 82630XGoogle Scholar
  27. 27.
    A.N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, M.A. Stepovich, Bull. Russ. Acad. Sci. Phys. 76(9), 970 (2012)CrossRefGoogle Scholar
  28. 28.
    A.N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, M.A. Stepovich, J. Surf. Invest. X-ray Synchrotron Neutron Tech. 6(6), 901 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Noltemeyer, Dissertation, Otto-von-Guericke-Universität Magdeburg, Magdeburg, 2016Google Scholar
  30. 30.
    T. Malis, S.C. Cheng, R.F. Egerton, J. Electron Microsc. Tech. 8(2), 193–200 (1988)CrossRefGoogle Scholar
  31. 31.
    T. Kobayashi, T. Sugita, M. Koyama, S.-I. Takayanagi, IEEE Trans. Nucl. Sci. 19(3), 324–333 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, US, Boston and MA, 2011)CrossRefGoogle Scholar
  33. 33.
    P. Perlin et al., Investigation of longitudinal-optical phonon-plasmon coupled modes in highly conducting bulk GaN. Appl. Phys. Lett. 67(17), 2524–2526 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    V.Y. Davydov et al., Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58(19), 12899–12907 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    H. Harima, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14(38), R967–R993 (2002)ADSGoogle Scholar
  36. 36.
    R. Kirste, S. Mohn, M.R. Wagner, J.S. Reparaz, A. Hoffmann, Phonon plasmon interaction in ternary group-III-nitrides. Appl. Phys. Lett. 101(4), 041909 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    R. Kirste et al., Compensation effects in GaN: Mg probed by Raman spectroscopy and photoluminescence measurements. J. Appl. Phys. 113(10), 103504 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J.S. Reparaz et al., A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry. Rev. Sci. Instrum. 85(3), 034901 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Zhang, S. Sheng, R. Wang, M. Sun, Tip-enhanced Raman spectroscopy. Anal. Chem. 88(19), 9328–9346 (2016)CrossRefGoogle Scholar
  40. 40.
    E. Poliani et al., Breakdown of far-field raman selection rules by light-plasmon coupling demonstrated by tip-enhanced raman scattering. J. Phys. Chem. Lett. 8(22), 5462–5471 (2017)CrossRefGoogle Scholar
  41. 41.
    R.V. Maximiano, R. Beams, L. Novotny, A. Jorio, L.G. Cançado, Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235434 (2012)Google Scholar
  42. 42.
    A. Hartschuh, Tip-enhanced near-field optical microscopy, in Handbook of Spectroscopy, 2nd enlarged edn., vol 4, no 43 (2014), pp. 1585–1610CrossRefGoogle Scholar
  43. 43.
    M.K. Schmidt, R. Esteban, A. González-Tudela, G. Giedke, J. Aizpurua, Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10(6), 6291–6298 (2016)CrossRefGoogle Scholar
  44. 44.
    N.S. Mueller, S. Heeg, S. Reich, Surface-enhanced Raman scattering as a higher-order Raman process. Phys. Rev. A 94(2), 023813 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Saito, M. Motohashi, N. Hayazawa, S. Kawata, Stress imagining of semiconductor surface by tip-enhanced Raman spectroscopy. J. Microsc. 229(2), 217–222 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    N. Lee et al., High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38(6), 789–796 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    R. Matsui, P. Verma, T. Ichimura, Y. Inouye, S. Kawata, Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 90(6), 061906 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S. Berweger, C.C. Neacsu, Y. Mao, H. Zhou, S.S. Wong, M.B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4(8), 496–499 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    J. Chen et al., Probing strain in bent semiconductor nanowires with raman spectroscopy. Nano Lett. 10(4), 1280–1286 (2010)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    N. Marquestaut, D. Talaga, L. Servant, P. Yang, P. Pauzauskie, F. Lagugné-Labarthet, Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy. J. Raman Spectrosc. 40(10), 1441–1445 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    P.G. Gucciardi, J.C. Valmalette, Different longitudinal optical-transverse optical mode amplification in tip enhanced Raman spectroscopy of GaAs(001). Appl. Phys. Lett. 97(26), 263104 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Ogawa, Y. Yuasa, F. Minami, S. Oda, Tip-enhanced Raman mapping of a single Ge nanowire. Appl. Phys. Lett. 99(5), 2–5 (2011)CrossRefGoogle Scholar
  53. 53.
    Y. Ogawa, T. Toizumi, F. Minami, A.V. Baranov, Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope. Phys. Rev. B Condens. Matter Mater. Phys. 83(8), 081302 (2011)Google Scholar
  54. 54.
    J.S. Reparaz et al., Probing local strain and composition in Ge nanowires by means of tip-enhanced Raman scattering. Nanotechnology 24(18), 185704 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    E. Poliani et al., Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering. Nano Lett. 13(7), 3205–3212 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    H. Rohrer, G. Binnig, Helv. Phys. Acta 55(6), 726 (1982)Google Scholar
  57. 57.
    G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)ADSCrossRefGoogle Scholar
  58. 58.
    A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, J. Vac. Sci. Technol. B 16(4), 2242 (1998)CrossRefGoogle Scholar
  59. 59.
    R. Held, G. Nowak, B.E. Ishaug, S.M. Seutter, A. Parkhomovsky, A.M. Dabrian, P.I. Cohen, I. Grzegory, S. Porowski, J. Appl. Phys. 85, 7697 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    R.M. Feenstra, P. Mårtensson, Phys. Rev. Lett. 61(4), 447 (1988)ADSCrossRefGoogle Scholar
  61. 61.
    R.M. Feenstra, Semicond. Sci. Technol. 9(12), 2157 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    H. Eisele, O. Flebbe, T. Kalka, C. Preinesberger, F. Heinrichsdorff, A. Krost, D. Bimberg, M. Dähne-Prietsch, Appl. Phys. Lett. 75(1), 106 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    Ch. Schulz, Th. Schmidt, J.I. Flege, N. Berner, Ch. Tessarek, D. Hommel, J. Falta, Phys. Stat. Sol. C 6(2), 305 (2009)Google Scholar
  64. 64.
    Ch. Schulz, S. Kuhr, H. Geffers, Th. Schmidt, J.I. Flege, T. Aschenbrenner, D. Hommel, J. Falta, J. Vac. Sci. Technol. A 29(1), 11013 (2011)CrossRefGoogle Scholar
  65. 65.
    L.F.J. Piper, T.D. Veal, M. Walker, I. Mahboob, C.F. McConville, H. Lu, W.J. Schaff, J. Vac. Sci. Technol. A 23(4), 617 (2005)Google Scholar
  66. 66.
    T. Ohashi, Y. Saito, T. Maruyama, Y. Nanishi, J. Cryst. Growth 237–239, 1022 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    H. Eisele, Ph. Ebert, Phys. Stat. Sol. RRL 6(9–10), 359 (2012)CrossRefGoogle Scholar
  68. 68.
    S. Zhao, S. Fathololoumi, K.H. Bevan, D.P. Liu, M.G. Kibria, Q. Li, G.T. Wang, H. Guo, Z. Mi, Nano Lett. 12(6), 2877 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    D. Krüger, S. Kuhr, T. Schmidt, D. Hommel, J. Falta, Phys. Stat. Sol. RRL 3(4), 91 (2009)Google Scholar
  70. 70.
    L. Ivanova, S. Borisova, H. Eisele, M. Dähne, A. Laubsch, Ph. Ebert, Appl. Phys. Lett. 93(19), 192110 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    Ph. Ebert, L. Ivanova, S. Borisova, H. Eisele, A. Laubsch, M. Dähne, Appl. Phys. Lett. 94, 062104 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    H. Eisele, J. Schuppang, M. Schnedler, M. Duchamp, C. Nenstiel, V. Portz, T. Kure, M. Bügler, A. Lenz, M. Dähne, A. Hoffmann, S. Gwo, S. Choi, J.S. Speck, R.E. Dunin-Borkowski, Ph. Ebert, Phys. Rev. B 94(24), 245201 (2016)ADSCrossRefGoogle Scholar
  73. 73.
    A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F.A. Ponce, J. Christen, A. Krost, Phys. Stat. Sol. C 0(6), 1583 (2003)Google Scholar
  74. 74.
    Ph. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dähne, Y.-L. Hong, S. Gwo, H. Eisele, Appl. Phys. Lett. 98(6), 062103 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    L. Lymperakis, P.H. Weidlich, H. Eisele, M. Schnedler, J.-P. Nys, B. Grandidier, D. Stiévenard, R.E. Dunin-Borkowski, J. Neugebauer, Ph. Ebert, Appl. Phys. Lett. 103(15), 152101 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    M. Franz, S. Appelfeller, H. Eisele, Ph. Ebert, M. Dähne, Phys. Rev. B 99, 195306 (2019)ADSCrossRefGoogle Scholar
  77. 77.
    M. Schnedler, V. Portz, H. Eisele, R.E. Dunin-Borkowski, Ph. Ebert, Phys. Rev. B 91(20), 205309 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, K. Kishino, Jpn. J. Appl. Phys. 36(4B), L459 (1997)ADSCrossRefGoogle Scholar
  79. 79.
    M. Sanchez-Garcia, E. Calleja, E. Monroy, F. Sanchez, F. Calle, E. Munoz, R. Beresford, J. Cryst. Growth 183(1), 23 (1998)ADSCrossRefGoogle Scholar
  80. 80.
    D. Zubia, S.D. Hersee, J. Appl. Phys. 85(9), 6492 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    E. Calleja, M.A. Sanchez-Garca, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, K. Ploog, Phys. Rev. B 62, 16826 (2000)ADSCrossRefGoogle Scholar
  82. 82.
    S.D. Hersee, X. Sun, X. Wang, Nano Lett. 6(8), 1808 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    C. Nenstiel, M. Bügler, G. Callsen, F. Nippert, T. Kure, S. Fritze, A. Dadgar, H. Witte, J. Bläsing, A. Krost, A. Hoffmann, Phys. Stat. Sol. RRL 9(12), 716 (2015)CrossRefGoogle Scholar
  84. 84.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4(5), 89 (1964)ADSCrossRefGoogle Scholar
  85. 85.
    T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang, Nano Lett. 3(8), 1063 (2003)ADSCrossRefGoogle Scholar
  86. 86.
    Q. Li, G.T. Wang, Appl. Phys. Lett. 93(4), 043119 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    B. Liu, Y. Bando, C. Tang, F. Xu, D. Golberg, Appl. Phys. Lett. 87(7), 073106 (2005)ADSCrossRefGoogle Scholar
  88. 88.
    M. Müller, Ph.D. thesis, Otto-von-Guericke-University Magdeburg, Germany, 2018Google Scholar
  89. 89.
    R. Koester, J.S. Hwang, C. Durand, D.L.S. Dang, J. Eymery, Nanotechnology 21(1), 015602 (2010)ADSCrossRefGoogle Scholar
  90. 90.
    K. Kishino, A. Kikuchi, H. Sekiguchi, S. Ishizawa, in SPIE Conference Proceedings, vol 6473 (2007), p. 64730TGoogle Scholar
  91. 91.
    A.-L. Bavencove, G. Tourbot, J. Garcia, Y. Desieres, P. Gilet, F. Levy, B. Andre, B. Gayral, B. Daudin, L.S. Dang, Nanotechnology 22(34), 345705 (2011)ADSCrossRefGoogle Scholar
  92. 92.
    S. Krylyuk, D. Paramanik, M. King, A. Motayed, J.-Y. Ha, J.E. Bonevich, A. Talin, A.V. Davydov, Appl. Phys. Lett. 101(24), 241119 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    P. Shields, M. Hugues, J. Zuniga-Perez, M. Cooke, M. Dineen, W. Wang, F. Causa, D. Allsopp, Phys. Stat. Sol. (c) 9(3–4), 631 (2012)Google Scholar
  94. 94.
    C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, J. Huang, Opt. Express 16(14), 10549 (2008)ADSCrossRefGoogle Scholar
  95. 95.
    T. Schimpke, M. Mandl, I. Stoll, B. Pohl-Klein, D. Bichler, F. Zwaschka, J. Strube-Knyrim, B. Huckenbeck, B. Max, M. Müller, P. Veit, F. Bertram, J. Christen, J. Hartmann, A. Waag, H.-J. Lugauer, M. Strassburg, Phys. Stat. Sol. (a) 213(6), 1577 (2016)Google Scholar
  96. 96.
    K. Kishino, H. Sekiguchi, A. Kikuchi, J. Cryst. Growth 311(7), 2063 (2009)ADSCrossRefGoogle Scholar
  97. 97.
    A. Urban, J. Malindretos, J.-H. Klein-Wiele, P. Simon, A. Rizzi, New J. Phys. 15(5), 053045 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    T. Eriksson, K.-D. Lee, B. Heidari, P. Rode, W. Bergbauer, M. Mandl, C. Kolper, M. Strassburg, in SPIE Conference Proceedings, vol 7970 (2011), p. 797015Google Scholar
  99. 99.
    C.-H. Liao, W.-M. Chang, H.-S. Chen, C.-Y. Chen, Y.-F. Yao, H.-T. Chen, C.-Y. Su, S.-Y. Ting, Y.-W. Kiang, C.C. Yang, Opt. Express 20(14), 15859 (2012)ADSCrossRefGoogle Scholar
  100. 100.
    B. Cord, J. Yang, H. Duan, D.C. Joy, J. Klingfus, K.K. Berggren, J. Vac. Sci. Technol. B 27(6), 2616 (2009)ADSCrossRefGoogle Scholar
  101. 101.
    A.E. Grigorescu, C.W. Hagen, Nanotechnology 20(29), 292001 (2009)CrossRefGoogle Scholar
  102. 102.
    T. Eriksson, S. Yamada, P.V. Krishnan, S. Ramasamy, B. Heidari, Microelectron. Eng. 88, 293 (2011)CrossRefGoogle Scholar
  103. 103.
    K. Kishino, S. Sekiguchi, A. Kikuchi, J. Cryst. Growth 311, 2063 (2009)ADSCrossRefGoogle Scholar
  104. 104.
    H. Sekiguchi, K. Kishino, A. Kikuchi, Appl. Phys. Express 1, 124002 (2008)ADSCrossRefGoogle Scholar
  105. 105.
    S. Li, A. Waag, J. Appl. Phys. 111(7), 071101 (2012)ADSCrossRefGoogle Scholar
  106. 106.
    M. Mandl, X. Wang, T. Schimpke, C. Kölper, M. Binder, J. Ledig, A. Waag, X. Kong, A. Trampert, F. Bertram, J. Christen, F. Barbagini, E. Calleja, M. Strassburg, Phys. Stat. Sol. Rapid Res. Lett. 7(10), 800 (2013)Google Scholar
  107. 107.
    S. Albert, A.M. Bengoechea-Encabo, F. Barbagini, D. Lopez-Rormero, M.A. Sanchez-Garcia, E. Calleja, P. Lefebvre, X. Kong, U. Jahn, A. Trampert, M. Müller, F. Bertram, G. Schmidt, P. Veit, S. Petzold, J. Christen, P. De Mierry, J. Zuniga-Perez, Int. J. High Speed Electron. Syst. 23(03), 1450020 (2014)CrossRefGoogle Scholar
  108. 108.
    A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, Phys. Stat. Sol. (c) 6(S2), 913 (2009)Google Scholar
  109. 109.
    E. Kioupakis, P. Rinke, K.T. Delaney, C.G.V. deWalle, Appl. Phys. Lett. 98(16), 161107 (2011)ADSCrossRefGoogle Scholar
  110. 110.
    M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, B. Galler, Appl. Phys. Lett. 103(7), 071108 (2013)ADSCrossRefGoogle Scholar
  111. 111.
    J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013)ADSCrossRefGoogle Scholar
  112. 112.
    M.S. Mohajerani, S. Khachadorian, T. Schimpke, C. Nenstiel, J. Hartmann, J. Ledig, A. Avramescu, M. Strassburg, A. Homann, A. Waag, Appl. Phys. Lett. 108(9), 091112 (2016)ADSCrossRefGoogle Scholar
  113. 113.
    M. Müller, P. Veit, F.F. Krause, T. Schimpke, S. Metzner, F. Bertram, T. Mehrtens, K. Muller-Caspary, A. Avramescu, M. Strassburg, A. Rosenauer, J. Christen, Nano Lett. 16(9), 5340 (2016)ADSCrossRefGoogle Scholar
  114. 114.
    S. Keller, B.P. Keller, D. Kapolnek, A.C. Abare, H. Masui, L.A. Coldren, U.K. Mishra, S.P.D. Baars, Appl. Phys. Lett. 68(22), 3147 (1996)ADSCrossRefGoogle Scholar
  115. 115.
    T. Schimpke, A. Avramescu, A. Koller, A. Fernando-Saavedra, J. Hartmann, J. Ledig, A. Waag, M. Strassburg, H.-J. Lugauer, J. Cryst. Growth 465, 34 (2017)ADSCrossRefGoogle Scholar
  116. 116.
    H. Fang, Z.J. Yang, Y. Wang, T. Dai, L.W. Sang, L.B. Zhao, T.J. Yu, G.Y. Zhang, J. Appl. Phys. 103(1), 014908 (2008)ADSCrossRefGoogle Scholar
  117. 117.
    M. Gibbon, J.P. Stagg, C.G. Cureton, E.J. Thrush, C.J. Jones, R.E. Mallard, R.E. Pritchard, N. Collis, A. Chew, Semicond. Sci. Technol. 8(6), 998 (1993)ADSCrossRefGoogle Scholar
  118. 118.
    T. Wunderer, M. Feneberg, F. Lipski, J. Wang, R.A.R. Leute, S. Schwaiger, K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, G.J. Beirne, M. Jetter, P. Michler, L. Schade, C. Vierheilig, U.T. Schwarz, A.D. Drager, A. Hangleiter, F. Scholz, Phys. Stat. Sol. (b) 248(3), 549 (2011)Google Scholar
  119. 119.
    C. Mounir, T. Schimpke, G. Rossbach, A. Avramescu, M. Strassburg, U.T. Schwarz, J. Appl. Phys. 120(15), 155702 (2016)ADSCrossRefGoogle Scholar
  120. 120.
    T. Nobis, M. Grundmann, Phys. Rev. A 72, 063806 (2005)ADSCrossRefGoogle Scholar
  121. 121.
    S. Chichibu, K. Wada, S. Nakamura, Appl. Phys. Lett. 71(16), 2346 (1997)ADSCrossRefGoogle Scholar
  122. 122.
    S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 69(27), 4188 (1996)ADSCrossRefGoogle Scholar
  123. 123.
    D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97(10), 103508 (2005)ADSCrossRefGoogle Scholar
  124. 124.
    M.J. Galtrey, R.A. Oliver, M.J. Kappers, C.J. Humphreys, P.H. Clifton, D. Larson, D.W. Saxey, A. Cerezo, J. Appl. Phys. 104(1), 013524 (2008)ADSCrossRefGoogle Scholar
  125. 125.
    D. Watson-Parris, M.J. Godfrey, P. Dawson, R.A. Oliver, M.J. Galtrey, M.J. Kappers, C.J. Humphreys, Phys. Rev. B 83, 115321 (2011)ADSCrossRefGoogle Scholar
  126. 126.
    S. Schulz, D.P. Tanner, E.P. O’Reilly, M.A. Caro, T.L. Martin, P.A.J. Bagot, M.P. Moody, F. Tang, J.T. Griths, F. Oehler, M.J. Kappers, R.A. Oliver, C.J. Humphreys, D. Sutherland, M.J. Davies, P. Dawson, Phys. Rev. B 92, 235419 (2015)ADSCrossRefGoogle Scholar
  127. 127.
    L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, A. Zunger, Appl. Phys. Lett. 74(13), 1842 (1999)ADSCrossRefGoogle Scholar
  128. 128.
    L.-W. Wang, Phys. Rev. 63, 245107 (2001)CrossRefGoogle Scholar
  129. 129.
    S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5(10), 810 (2006)ADSCrossRefGoogle Scholar
  130. 130.
    Y.-R. Wu, R. Shivaraman, K.-C. Wang, J.S. Speck, Appl. Phys. Lett. 101(8), 083505 (2012)ADSCrossRefGoogle Scholar
  131. 131.
    C. Humphreys, J. Griths, F. Tang, F. Oehler, S. Findlay, C. Zheng, J. Etheridge, T. Martin, P. Bagot, M. Moody, D. Sutherland, P. Dawson, S. Schulz, S. Zhang, W. Fu, T. Zhu, M. Kappers, R. Oliver, Ultramicroscopy 176, 93 (2017)CrossRefGoogle Scholar
  132. 132.
    T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, C.J. Humphreys, Appl. Phys. Lett. 83(26), 5419 (2003)ADSCrossRefGoogle Scholar
  133. 133.
    T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter, L. Reißmann, D. Bimberg, Appl. Phys. Lett. 86(24), 241911 (2005)ADSCrossRefGoogle Scholar
  134. 134.
    A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, S. Lutgen, Ultramicroscopy 111(8), 1316 (2011)CrossRefGoogle Scholar
  135. 135.
    F.F. Krause, J.-P. Ahl, D. Tytko, P.-P. Choi, R. Egoavil, M. Schowalter, T. Mehrtens, K. Müller-Caspary, J. Verbeeck, D. Raabe, J. Hertkorn, K. Engl, A. Rosenauer, Ultramicroscopy 156, 29 (2015)CrossRefGoogle Scholar
  136. 136.
    T. Bartel, C. Kisielowski, Ultramicroscopy 108(11), 1420 (2008)CrossRefGoogle Scholar
  137. 137.
    H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, F. Scholz, Phys. Rev. B 92, 106802 (2004)Google Scholar
  138. 138.
    A. Bell, J. Christen, F. Bertram, F.A. Ponce, H. Marui, S. Tanaka, Appl. Phys. Lett. 84(1) (2004)ADSCrossRefGoogle Scholar
  139. 139.
    S. Marcinkevicius, K.M. Kelchner, S. Nakamura, S.P. DenBaars, J.S. Speck, Phys. Stat. Sol. (c) 11(3–4), 690 (2014)Google Scholar
  140. 140.
    Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70(8), 981 (1997)ADSCrossRefGoogle Scholar
  141. 141.
    G. Schmidt, M. Müller, P. Veit, S. Metzner, F. Bertram, J. Hartmann, H. Zhou, H.-H. Wehmann, A. Waag, J. Christen, Sci. Rep. 8, 16026 (2018)ADSCrossRefGoogle Scholar
  142. 142.
    J. Arbiol et al., Nanoscale 4, 7517 (2012)ADSCrossRefGoogle Scholar
  143. 143.
    J.T. Griffiths et al., Appl. Phys. Lett. 110, 172105 (2017)ADSCrossRefGoogle Scholar
  144. 144.
    I. Griffths, D. Cherns, X. Wang, H.-H. Wehman, M. Mandl, M. Strassburg, A. Waag, Phys. Stat. Sol. (c) 11(3–4), 425 (2014)Google Scholar
  145. 145.
    S.-Y. Bae, K. Lekhal, H.-J. Lee, J.-W. Min, D.-S. Lee, Y. Honda, H. Amano, Phys. Stat. Sol. (b), 1600722 (2017)Google Scholar
  146. 146.
    C. Tessarek, M. Heilmann, E. Butzen, A. Haab, H. Hardtdegen, C. Dieker, E. Spiecker, S. Christiansen, Cryst. Growth Des. 14(3), 1486 (2014)CrossRefGoogle Scholar
  147. 147.
    J. Hartmann, X. Wang, H. Schuhmann, W. Dziony, L. Caccamo, J. Ledig, M.S. Mohajerani, T. Schimpke, M. Bähr, G. Lilienkamp, W. Daum, M. Seibt, M. Straburg, H.-H. Wehmann, A. Waag, Phys. Stat. Sol. (a) 212(12), 2830 (2015)Google Scholar
  148. 148.
    A.M. Fischer, Z. Wu, K. Sun, Q. Wei, Y. Huang, R. Senda, D. Iida, M. Iwaya, H. Amano, F.A. Ponce, Appl. Phys. Express 2(4), 041002 (2009)ADSCrossRefGoogle Scholar
  149. 149.
    F. Wu, Y.-D. Lin, A. Chakraborty, H. Ohta, S.P. DenBaars, S. Nakamura, J.S. Speck, Appl. Phys. Lett. 96(23), 231912 (2010)ADSCrossRefGoogle Scholar
  150. 150.
    V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 60(12), 8849–8858 (1999)ADSCrossRefGoogle Scholar
  151. 151.
    N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt, J. Massies, Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. J. Appl. Phys. 86(7), 3714 (1999)ADSCrossRefGoogle Scholar
  152. 152.
    M. Leroux et al., Quantum confined Stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells. Phys. Rev. B 58(20), R13371–R13374 (1998)ADSCrossRefGoogle Scholar
  153. 153.
    G.M.O. Hönig, S. Westerkamp, A. Hoffmann, G. Callsen, Shielding electrostatic fields in polar semiconductor nanostructures. Phys. Rev. Appl. 7(2), 024004 (2017)ADSCrossRefGoogle Scholar
  154. 154.
    S. Schlichting et al., Suppression of the quantum-confined Stark effect in polar nitride heterostructures. Commun. Phys. 1(1), 48 (2018)CrossRefGoogle Scholar
  155. 155.
    Y. Kayanuma, Phys. Rev. B 38, 9797–9805 (1988)ADSCrossRefGoogle Scholar
  156. 156.
    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)ADSCrossRefGoogle Scholar
  157. 157.
    M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, App. Phys. Lett. 61, 2051 (1992)ADSCrossRefGoogle Scholar
  158. 158.
    J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)CrossRefGoogle Scholar
  159. 159.
    X.F. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)CrossRefGoogle Scholar
  160. 160.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)ADSCrossRefGoogle Scholar
  161. 161.
    W. Han, S. Fan, L. Qunqing, Y. Hu, Science 277, 1287 (1997)CrossRefGoogle Scholar
  162. 162.
    B. Damilano, J. Brault, B. Alloing, J. Massies, Nano Lett. 16, 1863 (2016)ADSCrossRefGoogle Scholar
  163. 163.
    J. Müßener, LATh. Greif, S. Kalinowski, G. Callsen, P. Hille, J. Schörmann, M.R. Wagner, A. Schliwa, S. Martí-Sánchez, J. Arbiol, A. Hoffmann, M. Eickhoff, RSC Nanoscale 10, 5591 (2018)CrossRefGoogle Scholar
  164. 164.
    F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estrad, F. Peir, J.R. Morante, M. Eickhoff, J. Appl. Phys. 104, 034309 (2008)ADSCrossRefGoogle Scholar
  165. 165.
    J. Schörmann, P. Hille, M. Schäfer, J. Müßener, P. Becker, P.J. Klar, M. Kleine-Boymann, M. Rohnke, M. De La Mata, J. Arbiol, D.M. Hofmann, J. Teubert, M. Eickhoff, J. Appl. Phys. 114, 103505 (2013)ADSCrossRefGoogle Scholar
  166. 166.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. Lett. 53, 2173 (1984)ADSCrossRefGoogle Scholar
  167. 167.
    J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, B. Gayral, Phys. Rev. B 80, 121305 (2009)ADSCrossRefGoogle Scholar
  168. 168.
    L. Rigutti, J. Teubert, G. Jacopin, F. Fortuna, M. Tchernycheva, A. De Luna Bugallo, F.H. Julien, F. Furtmayr, M. Stutzmann, M. Eickhoff, Phys. Rev. B 82, 235308 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Frank Bertram
    • 1
  • Christoph Berger
    • 1
  • Jürgen Christen
    • 1
  • Holger Eisele
    • 2
  • Ludwig A. Th. Greif
    • 2
  • Axel Hoffmann
    • 2
    Email author
  • Janina Maultzsch
    • 3
  • Marcus Müller
    • 1
  • Emanuele Poliani
    • 2
  • Gordon Schmidt
    • 1
  • Peter Veit
    • 1
  • Markus R. Wagner
    • 2
  1. 1.Institut für PhysikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Institut für FestkörperphysikTechnische Universität BerlinBerlinGermany
  3. 3.Department of PhysicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations