Advertisement

Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration

  • J. A. LottEmail author
Chapter
  • 177 Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 194)

Abstract

I review my research group's work to date on the design, processing, performance, and key physics of state-of-the-art vertical cavity surface emitting lasers (VCSELs) for modern and emerging applications in optical data communication systems, as low to moderate power optical sources for sensing systems, and as very small to low optical power light sources for photonic-electronic integrated circuits. Via reduced complexity epitaxial designs that potentially lead to lower manufacturing and life cycle costs and via novel device geometries and processing methods we demonstrate record small-signal modulation bandwidth, the highest for all VCSELs at any wavelength to date, and record combinations of bandwidth and optical output power which is vital for emerging free space data communication, tracking, and sensing systems. We further demonstrate arrays of VCSELs of various sizes for a plethora of emerging applications supporting the Internet of Things and all manner of energy sustainable interactive gadgets.

Notes

Acknowledgements

This work is supported by the German Research Foundation via the Collaborative Research Center 787. I gratefully acknowledge the brilliant work of my research group members Nasibeh Haghighi, Dr. Marcin Gębski, and Dr. Philip Moser, and our collaborations with Prof. Tomasz Czyszanowski (Lodz University of Technology, Poland) and Dr. Martin Zorn (JENOPTIK Optical Systems GmbH, Germany).

References

  1. 1.
    N. Haghighi, P. Moser, J.A. Lott, Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays. IEEE J. Sel. Topics Quant. Electr. 25(6), 1700615, 1–15 (2019).  https://doi.org/10.1109/jstqe.2019.2922843CrossRefGoogle Scholar
  2. 2.
    I. Melngailis, Longitudinal injection plasma laser of InSb. Appl. Phys. Lett. 6, 59–60 (1965).  https://doi.org/10.1063/1.1754164ADSCrossRefGoogle Scholar
  3. 3.
    R. Dingle, W. Wiegmann, C.H. Henry, Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs–AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33(14), 827–830 (1974).  https://doi.org/10.1103/PhysRevLett.33.827ADSCrossRefGoogle Scholar
  4. 4.
    J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, W.A. Nordland Jr., Laser oscillation from quantum states in very thin GaAs–Al0.2Ga0.8As multilayer structures. Appl. Phys. Lett. 26(8), 463–465 (1975).  https://doi.org/10.1063/1.88211ADSCrossRefGoogle Scholar
  5. 5.
    J.P. van der Ziel, M. Ilegems, Multilayer GaAs–A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Appl. Opt. 14, 2627–2630 (1975).  https://doi.org/10.1364/AO.14.002627ADSCrossRefGoogle Scholar
  6. 6.
    D.R. Scifres, R.D. Burnham, W. Streifer, Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed—feedback lasers. J. Appl. Phys. 26(48), 48–50 (1975).  https://doi.org/10.1063/1.88068CrossRefGoogle Scholar
  7. 7.
    D. Scifres, R.D. Burnham, Distributed feedback diode laser. US Patent US 3983509, 28 Sep 1976Google Scholar
  8. 8.
    H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979).  https://doi.org/10.1143/JJAP.18.2329ADSCrossRefGoogle Scholar
  9. 9.
    M. Ogura, T. Hata, N.J. Kawai, T. Yao, GaAs/AlxGa1−x As multilayer reflector for surface emitting laser diode. Jpn. J. Appl. Phys. 22, L112–L114 (1983).  https://doi.org/10.1143/JJAP.22.L112ADSCrossRefGoogle Scholar
  10. 10.
    M. Ogura, T. Hata, T. Yao, Distributed feed back surface emitting laser diode with multilayered heterostructure. Jpn. J. Appl. Phys. 23, L512–L514 (1984).  https://doi.org/10.1143/JJAP.23.L512CrossRefGoogle Scholar
  11. 11.
    M. Ogura, T. Yao, Surface emitting laser diode with AlxGa1−xAs/GaAs multilayered heterostructure. J. Vac. Sci. Technol., B 3, 784–787 (1985).  https://doi.org/10.1116/1.583099CrossRefGoogle Scholar
  12. 12.
    K. Iga, S. Kinoshita, F. Koyama, Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6 mA. Electron. Lett. 23, 134–136 (1987).  https://doi.org/10.1049/el:19870095ADSCrossRefGoogle Scholar
  13. 13.
    T. Sakaguchi, F. Koyama, K. Iga, Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector. Electron. Lett. 24, 928–929 (1988).  https://doi.org/10.1049/el:19880632ADSCrossRefGoogle Scholar
  14. 14.
    P.L. Gourley, T.J. Drummond, Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarterwave high reflectors and AlGaAs/GaAs multiple. Appl. Phys. Lett. 50, 1225–1227 (1987).  https://doi.org/10.1063/1.97916ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Jewell, A. Scherer, S.L. McCall, Y.H. Lee, S. Walker, J.P. Harbison, L.T. Florez, Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron. Lett. 25, 1123–1134 (1989).  https://doi.org/10.1049/el:19890754CrossRefGoogle Scholar
  16. 16.
    Y.H. Lee, J.L. Jewell, A. Scherer, S.L. McCall, J.P. Harbison, L.T. Florez, Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett. 25, 1377–1378 (1989).  https://doi.org/10.1049/el:19890921ADSCrossRefGoogle Scholar
  17. 17.
    Y.H. Lee, B. Tell, K. Brown-Goebeler, J.L. Jewell, J.V. Hove, Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 μm. Electron. Lett. 26, 710–711 (1990).  https://doi.org/10.1049/el:19900463ADSCrossRefGoogle Scholar
  18. 18.
    R.S. Geels, S.W. Corzine, J.W. Scott, D.B. Young, L.A. Coldren, Low threshold planarized vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 2, 234–236 (1990).  https://doi.org/10.1109/68.53246ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Dallesasse, N. Holonyak Jr., A.R. Sugg, T.A. Richard, N. El-Zein, Hydrolyzation oxidation of AlxGa1−xAs–AlAs–GaAs quantum well heterostructures and superlattices. Appl. Phys. Lett. 57, 2844–2846 (1990).  https://doi.org/10.1063/1.103759ADSCrossRefGoogle Scholar
  20. 20.
    D.L. Huffaker, D.G. Deppe, K. Kumar, T.J. Rogers, Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl. Phys. Lett. 65, 97–99 (1994).  https://doi.org/10.1063/1.113087ADSCrossRefGoogle Scholar
  21. 21.
    K.D. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).  https://doi.org/10.1109/2944.640645ADSCrossRefGoogle Scholar
  22. 22.
    M. Dallesasse, N. Holonyak Jr., Oxidation of Al-bearing III–V materials: a review of key progress. J. Appl. Phys. 113, 051101 (2013).  https://doi.org/10.1063/1.4769968ADSCrossRefGoogle Scholar
  23. 23.
    Yole Développement 2019, online: http://www.yole.fr/2014-galery-LED.aspx#I00093392
  24. 24.
    N. Haghighi, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, J.A. Lott, Simplicity VCSELs, in Proceedings of SPIE 10552, Vertical-Cavity Surface-Emitting Lasers XXII, 105520 N (2018)Google Scholar
  25. 25.
    N. Haghighi, G. Larisch, M. Zorn, J.A. Lott, High bandwidth versus high optical output power in 980 nm VCSELs. HL 36.7, German Physical Society Spring Meeting, Berlin, 11–16 Mar 2018Google Scholar
  26. 26.
    P. Moser, H. Schmeckebier, M. Gębski, P. Śpiewak, R. Rosales, M. Wasiak, J.A. Lott, Intracavity and extracavity-contacted 980-nm oxide-confined VCSELs for optical interconnects and integration, Invited, in Proceedings SPIE 101220 J, Vertical-Cavity Surface-Emitting Lasers XXI (2017).  https://doi.org/10.1117/12.2256177
  27. 27.
    M. Marciniak, M. Gębski, M. Dems, E. Haglund, A. Larsson, M. Riaziat, J.A. Lott, T. Czyszanowski, Optimal parameters of monolithic high-contrast grating mirrors. Opt. Lett. 41(15), 3495–3498 (01 Aug 2016).  https://doi.org/10.1364/ol.41.003495ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Lott, P. Moser, M. Gębski, M. Dems, M. Wasiak, T. Czyszanowski, Energy-efficient VCSELs for integrated optoelectronic and photonic systems, Invited, in Proceedings ICP-2016, Kuching, Sarawak (Borneo, Malaysia, 2016), pp. 14–16.  https://doi.org/10.1109/ICP.2016.7510052
  29. 29.
    M. Gębski, M. Dems, J.A. Lott, T. Czyszanowski, Monolithic subwavelength high-index-contrast grating VCSEL. IEEE Photonics Technol. Lett. 27, 1953–1956 (2015).  https://doi.org/10.1109/LPT.2015.2447932ADSCrossRefGoogle Scholar
  30. 30.
    M. Gębski, J.A. Lott, T. Czyszanowski, Electrically-injected VCSEL with a single-layer monolithic subwavelength high index contrast grating mirror. Opt. Express 27(3), 7139–7146 (04 Feb 2019).  https://doi.org/10.1364/oe.27.007139ADSCrossRefGoogle Scholar
  31. 31.
    R. Rosales, M. Zorn, J.A. Lott, 30-GHz bandwidth with directly current modulated 980-nm oxide-aperture VCSELs. IEEE Photonics Technol. Lett. 29(23), 2107–2110 (2017).  https://doi.org/10.1109/LPT.2017.2764626ADSCrossRefGoogle Scholar
  32. 32.
    N. Haghighi, G. Larisch, M. Gębski, M. Marciniak, J.A. Lott, Bandwidth versus oxide aperture diameter for 980 nm Simplicity VCSELs, in Proceedings of 7th Workshop on Physics and Technology of Semiconductor Lasers, Krakow, Poland, 15–18 Oct 2017Google Scholar
  33. 33.
    N. Haghighi, G. Larisch, R. Rosales, M. Zorn, J.A. Lott, 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs, WD4, in Proceedings of IEEE International Semiconductor Laser Conference, Santa Fe, NM, USA, 16–19 Sep 2018Google Scholar
  34. 34.
    M. Noble, J.A. Lott, J.P. Loehr, Quasi-exact optical analysis of oxide-apertured microcavity VCSELs using vector finite elements. IEEE J. Quantum Electron. 34(12), 2327–2339 (1998).  https://doi.org/10.1109/3.736102ADSCrossRefGoogle Scholar
  35. 35.
    T. Höhne, L. Zschiedrich, N. Haghighi, J.A. Lott, S. Burger, Numerical computation of resonance modes and of constant-flux modes in VCSELs, in Proceedings of SPIE Photonics Europe 106821-65, Strasbourg, France, 22–26 Apr 2018Google Scholar
  36. 36.
    J.A. Lott, N. Haghighi, G. Larisch, M. Zorn, High bandwidth simplicity VCSELs, invited, paper 6, in Proceedings ICP-2018 (Langkawi, Malaysia, 2018), pp. 09–11.  https://doi.org/10.1109/icp.2018.8533202
  37. 37.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656, July–Oct 1948.  https://doi.org/10.1002/j.1538-7305.1948.tb01338.xMathSciNetCrossRefGoogle Scholar
  38. 38.
    N. Haghighi, G. Larisch, R. Rosales, J.A. Lott, 23 GHz bandwidth and 25 mW peak optical output power with 980 nm oxide aperture VCSELs, MC2.4, in Proceedings of IEEE Photonics Conference, Reston, VA, USA, 30 Sep–04 Oct 2018Google Scholar
  39. 39.
    J.A. Lott, R. Rosales, G. Larisch, N. Haghighi, 25–30 Gbps error-free data transmission with large oxide aperture diameter 980 nm VCSELs, W3A.3, in Proceedings Optical Fiber Conference (OFC), San Diego, CA, 03–07 Mar 2019Google Scholar
  40. 40.
    N. Haghighi, P. Moser, J.A. Lott, Bandwidth and optical output power of VCSELs and VCSEL arrays, in Proceedings of SPIE 10938, Vertical-Cavity Surface-Emitting Lasers XXIII, Photonics West 2019, San Francisco, CA, 02–07 Feb 2019.  https://doi.org/10.1117/12.2508720
  41. 41.
    N. Haghighi, J. Lavrencik, S.E. Ralph, J.A. Lott, 55 Gbps error free data transmission with 980 nm VCSELs across 100 m of multiple-mode optical fiber, TuE3-3, in Proceedings of 24th OptoElectronic and Communications Conference (OECC), Fukuoka, Japan, 07–11 July 2019Google Scholar
  42. 42.
    N. Haghighi, P. Moser, J.A. Lott, 40 Gbps with electrically parallel triple and septuple 980 nm VCSEL arrays. IEEE/OSA Journal of Lightwave Technology (24 Dec 2019). https://doi.org/10.1109/JLT.2019.2961931

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center of Nanophotonics, Institute of Solid State Physics, Technical University BerlinBerlinGermany

Personalised recommendations