Advertisement

Lower Bound on Network Diameter for Distributed Function Computation

  • H. K. DaiEmail author
  • M. Toulouse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11814)

Abstract

Parallel and distributed computing network-systems are modeled as graphs with vertices representing compute elements and adjacency-edges capturing their uni- or bi-directional communication. Distributed function computation covers a wide spectrum of major applications, such as quantized consensus and collaborative hypothesis testing, in distributed systems. Distributed computation over a network-system proceeds in a sequence of time-steps in which vertices update and/or exchange their values based on the underlying algorithm constrained by the time-(in)variant network-topology. For finite convergence of distributed information dissemination and function computation in the model, we study lower bounds on the number of time-steps for vertices to receive (initial) vertex-values of all vertices regardless of underlying protocol or algorithmics in time-invariant networks via the notion of vertex-eccentricity in a graph-theoretic framework. We prove a lower bound on the maximum vertex-eccentricity in terms of graph-order and -size in a strongly connected directed graph, and demonstrate its optimality via an explicitly constructed family of strongly connected directed graphs.

Keywords

Distributed function computation Linear iterative schemes Information dissemination Finite convergence Vertex-eccentricity 

References

  1. 1.
    Ayaso, O., Shah, D., Dahleh, M.A.: Information theoretic bounds for distributed computation over networks of point-to-point channels. IEEE Trans. Inf. Theory 56(12), 6020–6039 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, London (2008)CrossRefGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  4. 4.
    Dai, H.K., Toulouse, M.: Lower bound for function computation in distributed networks. In: Dang, T.K., Küng, J., Wagner, R., Thoai, N., Takizawa, M. (eds.) FDSE 2018. LNCS, vol. 11251, pp. 371–384. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03192-3_28CrossRefGoogle Scholar
  5. 5.
    Fich, F.E., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distrib. Comput. 16(2–3), 121–163 (2003)CrossRefGoogle Scholar
  6. 6.
    Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Distributed anonymous discrete function computation. IEEE Trans. Autom. Control 56(10), 2276–2289 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43(7), 1192–1203 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Katz, G., Piantanida, P., Debbah, M.: Collaborative distributed hypothesis testing. Computing Research Repository, abs/1604.01292 (2016)Google Scholar
  9. 9.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1–17:44 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77978-0CrossRefzbMATHGoogle Scholar
  11. 11.
    Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging. SIAM J. Control Optim. 48(1), 33–55 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sundaram, S.: Linear iterative strategies for information dissemination and processing in distributed systems. Ph.D. thesis, University of Illinois at Urbana-Champaign (2009)Google Scholar
  13. 13.
    Sundaram, S., Hadjicostis, C.N.: Distributed function calculation and consensus using linear iterative strategies. IEEE J. Sel. Areas Commun. 26(4), 650–660 (2008)CrossRefGoogle Scholar
  14. 14.
    Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear iterative strategies in the presence of malicious agents. IEEE Trans. Autom. Control 56(7), 1495–1508 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Toulouse, M., Minh, B.Q.: Applicability and resilience of a linear encoding scheme for computing consensus. In: Muñoz, V.M., Wills, G., Walters, R.J., Firouzi, F., Chang, V. (eds.) Proceedings of the Third International Conference on Internet of Things, Big Data and Security, IoTBDS 2018, Funchal, Madeira, Portugal, 19–21 March 2018, pp. 173–184. SciTePress (2018)Google Scholar
  16. 16.
    Toulouse, M., Minh, B.Q., Minh, Q.T.: Invariant properties and bounds on a finite time consensus algorithm. Trans. Large-Scale Data- Knowl.-Centered Syst. 41, 32–58 (2019)Google Scholar
  17. 17.
    Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xiao, L., Boyd, S.P., Kim, S.-J.: Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)CrossRefGoogle Scholar
  19. 19.
    Xu, A.: Information-theoretic limitations of distributed information processing. Ph.D. thesis, University of Illinois at Urbana-Champaign (2016)Google Scholar
  20. 20.
    Xu, A., Raginsky, M.: Information-theoretic lower bounds for distributed function computation. IEEE Trans. Inf. Theory 63(4), 2314–2337 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentOklahoma State UniversityStillwaterUSA
  2. 2.Computer Science DepartmentVietnamese-German UniversityBinh Duong New CityVietnam

Personalised recommendations