Types of Flame Retardants Used for the Synthesis of Flame-Retardant Polymers

  • Suprakas Sinha Ray
  • Malkappa Kuruma
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 294)


Currently, a variety of chemical compounds are being used as Flame-retardants (FRs) and they can be classified according to the type of element present.


  1. 1.
    F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R 63, 100–125 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Zaikov, S. Lomakin, Ecological issue of polymer flame retardancy. J. Appl. Polym. Sci. 86, 2449–2462 (2002)CrossRefGoogle Scholar
  3. 3.
    J.W. Gilman, S.J. Ritchie, T. Kashiwagi, S.M. Lomakin, Fire‐retardant additives for polymeric materials—I. Char formation from silica gel–potassium carbonate. Fire Mater. 21, 23–32 (1997)CrossRefGoogle Scholar
  4. 4.
    X. Su, Y. Yi, J. Tao, H. Qi, D. Li, Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 105, 12–20 (2014)CrossRefGoogle Scholar
  5. 5.
    Z.Z. Xu, J.Q. Huang, M.J. Chen, Y. Tan, Y.Z. Wang, Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym. Degrad. Stab. 98, 2011–2020 (2013)CrossRefGoogle Scholar
  6. 6.
    Q. Lv, J.Q. Huang, M.J. Chen, J. Zhao, Y. Tan, L. Chen, Y.Z. Wang, An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind. Eng. Chem. Res. 52, 9397–9404 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Wang, Y. Liu, J. Li, Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain. Chem. Eng. 5, 2375–2383 (2017)CrossRefGoogle Scholar
  8. 8.
    X.P. Hu, W.Y. Li, Y.Z. Wang, Synthesis and characterization of a novel nitrogen-containing flame retardant. J. Appl. Polym. Sci. 94, 1556–1561 (2004)CrossRefGoogle Scholar
  9. 9.
    X.P. Hu, Y.L. Li, Y.Z. Wang, Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol. Mater. Eng. 289, 208–212 (2004)CrossRefGoogle Scholar
  10. 10.
    B. Li, M. Xu, Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 91, 1380–1386 (2006)CrossRefGoogle Scholar
  11. 11.
    W. Wang, P. Wen, J. Zhan, N. Hong, W. Cai, Z. Gui, Y. Hu, Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym. Degrad. Stab. 144, 454–463 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Wang, P. Lv, Y. Hu, K. Hu, Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol. J. Anal. Appl. Pyrolysis 86, 207–214 (2009)CrossRefGoogle Scholar
  13. 13.
    M.J. Chen, Z.B. Shao, X.L. Wang, L. Chen, Y.Z. Wang, Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant. Ind. Eng. Chem. Res. 51, 9769–9776 (2012)CrossRefGoogle Scholar
  14. 14.
    D. Lee, D.H. Hyun, S. Gwon, H.D. Cho, S. Kim, Method for manufacturing dicyclic phosphorus melamine compounds having superior fire retardancy and fire retardant material using thereof, Google Patents, 2002Google Scholar
  15. 15.
    Y. Chen, Q. Wang, Preparation, properties and characterizations of halogen-free nitrogen–phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polym. Degrad. Stab. 91, 2003–2013 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Tan, Z.B. Shao, X.F. Chen, J.W. Long, L. Chen, Y.Z. Wang, Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Interfaces 7, 17919–17928 (2015)PubMedCrossRefGoogle Scholar
  17. 17.
    S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2007)CrossRefGoogle Scholar
  18. 18.
    S. Chen, J. Li, Y. Zhu, S. Su, Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene. RSC Adv. 4, 32902–32913 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Han, G. Liang, A. Gu, J. Ye, Z. Zhang, L. Yuan, A novel inorganic–organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J. Mater. Chem. A 1, 2169–2182 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene–vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Appl. Mater. Interfaces 3, 3754–3761 (2011)PubMedCrossRefGoogle Scholar
  21. 21.
    S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman, T. Kashiwagi, PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 24, 201–208 (2000)CrossRefGoogle Scholar
  22. 22.
    J.S. Wang, D.Y. Wang, Y. Liu, X.G. Ge, Y.Z. Wang, Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 108, 2644–2653 (2008)CrossRefGoogle Scholar
  23. 23.
    G. Camino, L. Costa, G. Martinasso, Intumescent fire-retardant systems. Polym. Degrad. Stab. 23, 359–376 (1989)CrossRefGoogle Scholar
  24. 24.
    S. Duquesne, M.L. Bras, S. Bourbigot, R. Delobel, H. Vezin, G. Camino, B. Eling, C. Lindsay, T. Roels, Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 27, 103–117 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Lewin, Recent Advances in Flame Retardancy of Polymeric Materials (BCC, 1997)Google Scholar
  26. 26.
    R. Mount, J. Pysz, Phosphates as flame retardant additives, in: Proceedings of the International Conference on Fire Safety, 1991, pp. 203–11Google Scholar
  27. 27.
    A. Pitts, W. Kuryla, A. Papa, Flame Retardancy of Polymeric Materials (Marcel Dekker, New York, 1973)Google Scholar
  28. 28.
    S. Duquesne, M. Le Bras, S. Bourbigot, R. Delobel, G. Camino, B. Eling, C. Lindsay, T. Roels, H. Vezin, Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J. Appl. Polym. Sci. 82, 3262–3274 (2001)CrossRefGoogle Scholar
  29. 29.
    Y. Yuan, H. Yang, B. Yu, Y. Shi, W. Wang, L. Song, Y. Hu, Y. Zhang, Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind. Eng. Chem. Res. 55, 10813–10822 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Q. Wang, Catalytic action of phospho-tungstic acid in the synthesis of melamine salts of pentaerythritol phosphate and their synergistic effects in flame retarded polypropylene. Polym. Degrad. Stab. 91, 2513–2519 (2006)CrossRefGoogle Scholar
  31. 31.
    J.M. Lubczak, R. Lubczak, Melamine polyphosphate—the reactive and additive flame retardant for polyurethane foams. Acta Chim. Slov. 63, 77–87 (2016)PubMedCrossRefGoogle Scholar
  32. 32.
    W. Yao, H. Wang, D. Guan, T. Fu, T. Zhang, Y. Dou, The effect of soluble ammonium polyphosphate on the properties of water blown semirigid polyurethane foams. Adv. Mater. Sci. Eng. 2017 (2017), Article ID 5282869, 7 pp.Google Scholar
  33. 33.
    G. Camino, L. Costa, L. Trossarelli, F. Costanzi, A. Pagliari, Study of the mechanism of intumescence in fire retardant polymers: Part VI—Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stab. 12, 213–228 (1985)CrossRefGoogle Scholar
  34. 34.
    S. Bourbigot, M. Le Bras, R. Delobel, P. Bréant, J.M. Trémillon, Carbonization mechanisms resulting from intumescence—Part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 33, 283–294 (1995)CrossRefGoogle Scholar
  35. 35.
    S. Bourbigot, M.L. Bras, P. Bréant, J.M. Trémillon, R. Delobel, Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations—criteria for the choice of the zeolite. Fire Mater. 20, 145–154 (1996)CrossRefGoogle Scholar
  36. 36.
    S. Bourbigot, M. Le Bras, R. Delobel, Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 31, 1219–1230 (1993)CrossRefGoogle Scholar
  37. 37.
    R. Delobel, N. Ouassou, M. Le Bras, J.M. Leroy, Fire retardance of polypropylene: action of diammonium pyrophosphate-pentaerythritol intumescent mixture. Polym. Degrad. Stab. 23, 349–357 (1989)CrossRefGoogle Scholar
  38. 38.
    M. Liu, Y. Liu, Q. Wang, Flame-retarded poly(propylene) with melamine phosphate and pentaerythritol/polyurethane composite charring agent. Macromol. Mater. Eng. 292, 206–213 (2007)CrossRefGoogle Scholar
  39. 39.
    W.Y. Chen, Y.Z. Wang, F.C. Chang, Thermal and flame retardation properties of melamine phosphate-modified epoxy resins. J. Polym. Res. 11, 109–117 (2004)CrossRefGoogle Scholar
  40. 40.
    Q. Tang, R. Yang, Y. Song, J. He, Investigations of flame-retarded thermoplastic poly(imide–urethane)s with intumescent flame retardants. Ind. Eng. Chem. Res. 53, 9728–9737 (2014)CrossRefGoogle Scholar
  41. 41.
    P. Lv, Z. Wang, K. Hu, W. Fan, Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym. Degrad. Stab. 90, 523–534 (2005)CrossRefGoogle Scholar
  42. 42.
    S.H. Chiu, W.K. Wang, Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 39, 1951–1955 (1998)CrossRefGoogle Scholar
  43. 43.
    Z.B. Shao, C. Deng, Y. Tan, M.J. Chen, L. Chen, Y.Z. Wang, An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl. Mater. Interfaces 6, 7363–7370 (2014)PubMedCrossRefGoogle Scholar
  44. 44.
    W.H. Rao, Z.Y. Hu, H.X. Xu, Y.J. Xu, M. Qi, W. Liao, S. Xu, Y.Z. Wang, Flame retardant flexible polyurethane foams with highly efficient melamine salt. Ind. Eng. Chem. Res. 56, 7112–7119 (2017)CrossRefGoogle Scholar
  45. 45.
    M.J. Chen, Y.J. Xu, W.H. Rao, J.Q. Huang, X.L. Wang, L. Chen, Y.Z. Wang, Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviors of flexible polyurethane foams. Ind. Eng. Chem. Res. 53, 8773–8783 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, F. Poutch, Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym. Degrad. Stab. 88, 106–113 (2005)CrossRefGoogle Scholar
  47. 47.
    S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, Flame behavior of cotton coated with polyurethane containing microencapsulated flame retardant agent. J. Ind. Text. 31, 11–26 (2001)CrossRefGoogle Scholar
  48. 48.
    S. Zhou, H. Lu, L. Song, Z. Wang, Y. Hu, J. Ni, W. Xing, Microencapsulated ammonium polyphosphate with polyurethane shell: application to flame retarded polypropylene/ethylene-propylene diene terpolymer blends. J. Macromol. Sci. Part A 46, 136–144 (2008)CrossRefGoogle Scholar
  49. 49.
    J. Ni, L. Song, Y. Hu, P. Zhang, W. Xing, Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane. Polym. Adv. Technol. 20, 999–1005 (2009)CrossRefGoogle Scholar
  50. 50.
    Y. Liu, M. Liu, D. Xie, Q. Wang, Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene. Polym. Plast. Technol. Eng. 47, 330–334 (2008)CrossRefGoogle Scholar
  51. 51.
    J. Imuta, N. Kashiwa, S. Ota, S. Moriya, T. Nobori, K. Mizutani, Polar group-containing olefin copolymer, process for preparing the same, thermoplastic resin composition containing the copolymer, and uses thereof, Google Patents, 2010Google Scholar
  52. 52.
    K. Pielichowski, A. Leszczynska, Structure–property relationships in polyoxymethylene/thermoplastic polyurethane elastomer blends. J. Polym. Eng. 25, 359–373 (2005)CrossRefGoogle Scholar
  53. 53.
    M. Mehrabzadeh, D. Rezaie, Impact modification of polyacetal by thermoplastic elastomer polyurethane. J. Appl. Polym. Sci. 84, 2573–2582 (2002)CrossRefGoogle Scholar
  54. 54.
    K. Palanivelu, S. Balakrishnan, P. Rengasamy, Thermoplastic polyurethane toughened polyacetal blends. Polym. Test. 19, 75–83 (2000)CrossRefGoogle Scholar
  55. 55.
    F.C. Chang, M.Y. Yang, J.S. Wu, Blends of polycarbonate and polyacetal. Polymer 32, 1394–1400 (1991)CrossRefGoogle Scholar
  56. 56.
    H. Piechota, Some correlations between raw materials, formalation, and flame-retardant properties of rigid urethane foams. J. Cell. Plast. 1, 186–199 (1965)CrossRefGoogle Scholar
  57. 57.
    E.N. Peters, Flame‐retardant thermoplastics. I. Polyethylene–red phosphorus. J. Appl. Polym. Sci. 24, 1457–1464 (1979)CrossRefGoogle Scholar
  58. 58.
    C.S. Wang, J.Y. Shieh, Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz[c,e] [1,2]oxaphosphorin-6-yl) 1,4-benzenediol. Polymer 39, 5819–5826 (1998)CrossRefGoogle Scholar
  59. 59.
    S. Toranosuke, Cyclic organophosphorus compounds and process for making same, Google Patents, 1972Google Scholar
  60. 60.
    K.A. Salmeia, S. Gaan, An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications. Polym. Degrad. Stab. 113, 119–134 (2015)CrossRefGoogle Scholar
  61. 61.
    T. Saito, Cyclic organophosphorus compounds and process for making them, U.S. Patent 3,702,878, 1972Google Scholar
  62. 62.
    J.L. Montchamp, Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc. Chem. Res. 47, 77–87 (2013)PubMedCrossRefGoogle Scholar
  63. 63.
    V.M. Chopdekar, A.R. Mellozzi, A.T. Cornelson, Flame-retardant cyanate esters, Google Patents, 2010Google Scholar
  64. 64.
    B. Xiong, R. Shen, M. Goto, S.F. Yin, L.B. Han, Highly selective 1,4‐ and 1,6‐addition of P(O)–H compounds to p‐quinones: a divergent method for the synthesis of C‐ and O‐phosphoryl hydroquinone derivatives. Chem.-A Eur. J. 18, 16902–16910 (2012)CrossRefGoogle Scholar
  65. 65.
    X. Qian, L. Song, S. Jiang, G. Tang, W. Xing, B. Wang, Y. Hu, R.K. Yuen, Novel flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and unsaturated bonds: synthesis, characterization, and application in the flame retardancy of epoxy acrylates. Ind. Eng. Chem. Res. 52, 7307–7315 (2013)CrossRefGoogle Scholar
  66. 66.
    W. Xu, A. Wirasaputra, S. Liu, Y. Yuan, J. Zhao, Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 122, 44–51 (2015)CrossRefGoogle Scholar
  67. 67.
    Y.Q. Xiong, X.Y. Zhang, J. Liu, M.M. Li, F. Guo, X.N. Xia, W.J. Xu, Synthesis of novel phosphorus-containing epoxy hardeners and thermal stability and flame-retardant properties of cured products. J. Appl. Polym. Sci. 125, 1219–1225 (2012)CrossRefGoogle Scholar
  68. 68.
    S. Yang, J. Wang, S. Huo, M. Wang, J. Wang, Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym. Degrad. Stab. 121, 398–406 (2015)CrossRefGoogle Scholar
  69. 69.
    Y.L. Liu, Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer 42, 3445–3454 (2001)CrossRefGoogle Scholar
  70. 70.
    R.J. Jeng, S.M. Shau, J.J. Lin, W.C. Su, Y.S. Chiu, Flame retardant epoxy polymers based on all phosphorus-containing components. Eur. Polym. J. 38, 683–693 (2002)CrossRefGoogle Scholar
  71. 71.
    Y. Zhang, B. Yu, B. Wang, K.M. Liew, L. Song, C. Wang, Y. Hu, Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind. Eng. Chem. Res. 56, 1245–1255 (2017)CrossRefGoogle Scholar
  72. 72.
    C.S. Wu, Y.L. Liu, Y.S. Chiu, Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route. J. Appl. Polym. Sci. 85, 2254–2259 (2002)CrossRefGoogle Scholar
  73. 73.
    S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 113, 180–188 (2015)CrossRefGoogle Scholar
  74. 74.
    P. Wang, Z. Cai, Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism. Polym. Degrad. Stab. 137, 138–150 (2017)CrossRefGoogle Scholar
  75. 75.
    C.H. Lin, S.L. Chang, T.P. Wei, S.H. Ding, W.C. Su, Facile, one-pot synthesis of phosphinate-substituted bisphenol A and its alkaline-stable diglycidyl ether derivative. Polym. Degrad. Stab. 95, 1167–1176 (2010)CrossRefGoogle Scholar
  76. 76.
    S.X. Cai, C.H. Lin, Flame‐retardant epoxy resins with high glass‐transition temperatures from a novel trifunctional curing agent: dopotriol. J. Appl. Polym. Sci. Part A Polym. Chem. 43, 2862–2873 (2005)CrossRefGoogle Scholar
  77. 77.
    C.H. Lin, S.L. Chang, L.A. Peng, S.P. Peng, Y.H. Chuang, Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 51, 3899–3906 (2010)CrossRefGoogle Scholar
  78. 78.
    S. Yang, J. Wang, S. Huo, M. Wang, L. Cheng, Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. Ind. Eng. Chem. Res. 54, 7777–7786 (2015)CrossRefGoogle Scholar
  79. 79.
    X. Liu, K.A. Salmeia, D. Rentsch, J. Hao, S. Gaan, Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J. Anal. Appl. Pyrolysis 124, 219–229 (2017)CrossRefGoogle Scholar
  80. 80.
    X. Li, Z. Zhao, Y. Wang, H. Yan, X. Zhang, B. Xu, Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem. Eng. J. 324, 237–250 (2017)CrossRefGoogle Scholar
  81. 81.
    P.L. Kuo, J.M. Chang, T.L. Wang, Flame‐retarding materials—I. Syntheses and flame‐retarding property of alkylphosphate‐type polyols and corresponding polyurethanes. J. Appl. Polym. Sci. 69, 1635–1643 (1998)CrossRefGoogle Scholar
  82. 82.
    D. Price, L.K. Cunliffe, K. Bullett, T.R. Hull, G.J. Milnes, J.R. Ebdon, B.J. Hunt, P. Joseph, Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym. Degrad. Stab. 92, 1101–1114 (2007)CrossRefGoogle Scholar
  83. 83.
    A. Lorenzetti, M. Modesti, S. Besco, D. Hrelja, S. Donadi, Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 96, 1455–1461 (2011)CrossRefGoogle Scholar
  84. 84.
    H. Yang, L. Song, Q. Tai, X. Wang, B. Yu, Y. Yuan, Y. Hu, R.K. Yuen, Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 105, 248–256 (2014)CrossRefGoogle Scholar
  85. 85.
    S. Levchik, G. Camino, L. Costa, M. Luda, Mechanistic study of thermal behaviour and combustion performance of carbon fibre-epoxy resin composites fire retarded with a phosphorus-based curing system. Polym. Degrad. Stab. 54, 317–322 (1996)CrossRefGoogle Scholar
  86. 86.
    P.L. Kuo, J.S. Wang, P.C. Chen, L.W. Chen, Flame‐retarding materials, 3. Tailor‐made thermal stability epoxy curing agents containing difunctional phosphoric amide groups. Macromol. Chem. Phy. 202, 2175–2180 (2001)CrossRefGoogle Scholar
  87. 87.
    U. Braun, A.I. Balabanovich, B. Schartel, U. Knoll, J. Artner, M. Ciesielski, M. Döring, R. Perez, J.K. Sandler, V. Altstädt, Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 47, 8495–8508 (2006)CrossRefGoogle Scholar
  88. 88.
    K.C. Cheng, S.Y. Yu, W.Y. Chiu, Thermal properties of side-chain phosphorus-containing epoxide cured with amine. J. Appl. Polym. Sci. 83, 2741–2748 (2002)CrossRefGoogle Scholar
  89. 89.
    T. Mariappan, Y. Zhou, J. Hao, C.A. Wilkie, Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 49, 3171–3180 (2013)CrossRefGoogle Scholar
  90. 90.
    H.P.N. Allcock, Compounds (Academic Press, New York, 1972)Google Scholar
  91. 91.
    D. Tate, Polyphosphazene elastomers, J. Polym. Sci.: Polym. Symp. 48, 33–45 (1974)Google Scholar
  92. 92.
    H. Allcock, Phosphazene high polymers. Chem. Br. 10, 118–121 (1974)Google Scholar
  93. 93.
    P. Potin, R. De Jaeger, Polyphosphazenes: synthesis, structures, properties, applications. Eur. Polym. J. 27, 341–348 (1991)CrossRefGoogle Scholar
  94. 94.
    C.W. Allen, The use of phosphazenes as fire resistant materials. J. Fire Flammabil. 11, 320–328 (1993)CrossRefGoogle Scholar
  95. 95.
    W.B. Mueller, Polyphosphazene foam—a new highly fire resistant thermal insulation. J. Cell. Plast. 22, 53–63 (1986)CrossRefGoogle Scholar
  96. 96.
    E. Quinn, R. Dieck, Flame and smoke properties of the polyphosphazenes. II. 1:1-poly/aryloxyphosphazene/ copolymers. J. Fire Flammabil. 7, 358–367 (1976)Google Scholar
  97. 97.
    A. DiEdwardo, F. Zitomer, D. Stuetz, R. Singler, D. Macaione, Flame-retardant characteristics of polyorganophosphazenes in polymeric substrates, in Abstracts of Paper of the American Chemical Society, AMER Chemical Society, Washington, DC, 1976, p. 115Google Scholar
  98. 98.
    H. Penton, Polyphosphazenes: Performance Polymers for Specialty Applications (ACS Publications, 1988)Google Scholar
  99. 99.
    H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces. Appl. Organomet. Chem. 12, 659–666 (1998)CrossRefGoogle Scholar
  100. 100.
    H.R. Allcock, Inorganic–organic polymers. Adv. Mater. 6, 106–115 (1994)CrossRefGoogle Scholar
  101. 101.
    D. Mathew, C.P.R. Nair, K.N. Ninan, Phosphazene–triazine cyclomatrix network polymers: some aspects of synthesis, thermal- and flame-retardant characteristics. Polym. Int. 49, 48–56 (2000)CrossRefGoogle Scholar
  102. 102.
    F.F. Stewart, M.K. Harrup, Phosphazene monomers from the regiospecific reaction of tert-butylhydroquinone with hexachlorocyclotriphosphazene: a new composite material precursor. J. Appl. Polym. Sci. 72, 1085–1090 (1999)CrossRefGoogle Scholar
  103. 103.
    Y. Chen-Yang, J. Chuang, Y. Yang, C. Li, Y. Chiu, New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood. J. Appl. Polym. Sci. 69, 115–122 (1998)CrossRefGoogle Scholar
  104. 104.
    I. Dez, R. De Jaeger, Organic–inorganic polymers: synthesis and characterization of cyclophosphazene-substituted polyurethanes. J. Inorg. Organomet. Polym. 6, 111–121 (1996)CrossRefGoogle Scholar
  105. 105.
    I. Dez, R.D. Jaeger, A new cyclolinear phosphazene polyurethane: synthesis from a diisocyanate and a bis-spiro-substituted cyclotriphosphazene diol. Phosphorus Sulfur Silicon Relat. Elem. 130, 1–14 (1997)CrossRefGoogle Scholar
  106. 106.
    Z. Li, J. Qin, Synthesis of C60-containing polyphosphazenes from a new reactive macromolecular intermediate: polyphosphazene azides. J. Polym. Sci. Part A: Polym. Chem. 42, 194–199 (2004)CrossRefGoogle Scholar
  107. 107.
    I. Dez, N. Henry, R. De Jaeger, New heat-resistant polyurethanes prepared from hydroxylated cyclotriphosphazenes. Polym. Degrd. Stab. 64, 433–437 (1999)CrossRefGoogle Scholar
  108. 108.
    Y. Chen-Yang, C. Yuan, C. Li, H. Yang, Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes. J. Appl. Polym. Sci. 90, 1357–1364 (2003)CrossRefGoogle Scholar
  109. 109.
    C. Yuan, S. Chen, C. Tsai, Y. Chiu, Y. Chen-Yang, Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes: synthesis and properties. Polym. Adv. Technol. 16, 393–399 (2005)CrossRefGoogle Scholar
  110. 110.
    P. Jiang, X. Gu, S. Zhang, S. Wu, Q. Zhao, Z. Hu, Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant. Ind. Eng. Chem. Res. 54, 2974–2982 (2015)CrossRefGoogle Scholar
  111. 111.
    Y. Chen-Yang, H. Lee, C. Yuan, A flame‐retardant phosphate and cyclotriphosphazene‐containing epoxy resin: synthesis and properties. J. Polym. Sci. Part A: Polym. Chem. 38, 972–981 (2000)CrossRefGoogle Scholar
  112. 112.
    R. Yang, W. Hu, L. Xu, Y. Song, J. Li, Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym. Degrad. Stab. 122, 102–109 (2015)CrossRefGoogle Scholar
  113. 113.
    H. Liu, X. Wang, D. Wu, Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy. Polym. Degrad. Stab. 103, 96–112 (2014)CrossRefGoogle Scholar
  114. 114.
    J. Li, F. Pan, H. Xu, L. Zhang, Y. Zhong, Z. Mao, The flame-retardancy and anti-dripping properties of novel poly(ethylene terephthalate)/cyclotriphosphazene/silicone composites. Polym. Degrad. Stab. 110, 268–277 (2014)CrossRefGoogle Scholar
  115. 115.
    W.K. Huang, K.J. Chen, J.T. Yeh, K.N. Chen, Curing and combustion properties of a PU-coating system with UV-reactive phosphazene. J. Appl. Polym. Sci. 85, 1980–1991 (2002)CrossRefGoogle Scholar
  116. 116.
    F. Liu, H. Wei, X. Huang, J. Zhang, Y. Zhou, X. Tang, Preparation and properties of novel inherent flame-retardant cyclotriphosphazene-containing epoxy resins. J. Macromol. Sci. Part B 49, 1002–1011 (2010)CrossRefGoogle Scholar
  117. 117.
    J. Verkade, L. Reynolds, The synthesis of a novel ester of phosphorus and of arsenic. J. Org. Chem. 25, 663–665 (1960)CrossRefGoogle Scholar
  118. 118.
    X. Li, Y.X. Ou, Y.H. Zhang, D.J. Lian, Synthesis and structure of a novel caged bicyclic phosphate flame retardant. Chin. Chem. Lett. 11, 887–890 (2000)Google Scholar
  119. 119.
    Y. Ou, X. Li, Study on polypropylene flame-retarded with intumescent flame retardants containing caged bicyclic phosphates. Polym. Mater. Sci. Eng. 19, 6–10 (2001)Google Scholar
  120. 120.
    R.P. Ranaweera, G. Scott, Mechanisms of antioxidant action: antioxidant behaviour of nickel complex UV stabilisers. Eur. Polym. J. 12, 825–830 (1976)CrossRefGoogle Scholar
  121. 121.
    J. Holcik, M. Kosik, A. Benbow, C. Cullis, The oxidative thermal degradation of polypropylene and the influence of transition metal chelates. Eur. Polym. J. 14, 769–772 (1978)CrossRefGoogle Scholar
  122. 122.
    A. Benbow, C. Cullis, H. Laver, Effects of metal chelates on the oxidation of polyolefins at high temperatures. Polymer 19, 824–828 (1978)CrossRefGoogle Scholar
  123. 123.
    F. Xie, Y.Z. Wang, B. Yang, Y. Liu, A novel intumescent flame-retardant polyethylene system. Macromol. Mater. Eng. 291, 247–253 (2006)CrossRefGoogle Scholar
  124. 124.
    W. Jiang, F.L. Jin, S.J. Park, Synthesis of a novel phosphorus-nitrogen-containing intumescent flame retardant and its application to fabrics. J. Ind. Eng. Chem. 27, 40–43 (2015)CrossRefGoogle Scholar
  125. 125.
    F. Gao, L. Tong, Z. Fang, Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 91, 1295–1299 (2006)CrossRefGoogle Scholar
  126. 126.
    X. Lai, S. Tang, H. Li, X. Zeng, Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polym. Degrad. Stab. 113, 22–31 (2015)CrossRefGoogle Scholar
  127. 127.
    H.Q. Peng, D.Y. Wang, Q. Zhou, Y.Z. Wang, An S- and P-containing flame retardant for polypropylene. Chin. J. Polym. Sci. 26, 299–309 (2008)CrossRefGoogle Scholar
  128. 128.
    Z. Fang, P. Song, L. Tong, Z. Guo, Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites. Thermochim. Acta 473, 106–108 (2008)CrossRefGoogle Scholar
  129. 129.
    P.A. Song, H. Liu, Y. Shen, B. Du, Z. Fang, Y. Wu, Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites. J. Mater. Chem. 19, 1305–1313 (2009)CrossRefGoogle Scholar
  130. 130.
    J.-P. Hu, D. Li, Y. Qin, X.-Y. Wang, Promotion effect of melamine on flame retardancy of epoxy resins containing caged bicyclic phosphate. Chin. J. Polym. Sci. 25, 581–588 (2007)CrossRefGoogle Scholar
  131. 131.
    Y. Halpern, D.M. Mott, R.H. Niswander, Fire retardancy of thermoplastic materials by intumescence. Ind. Eng. Chem. Prod. Res. Dev. 23, 233–238 (1984)CrossRefGoogle Scholar
  132. 132.
    K. Studer, C. Decker, E. Beck, R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Prog. Org. Coat. 48, 92–100 (2003)CrossRefGoogle Scholar
  133. 133.
    H. Kim, M.W. Urban, Molecular level chain scission mechanisms of epoxy and urethane polymeric films exposed to UV/H2O. Multidimensional spectroscopic studies. Langmuir 16, 5382–5390 (2000)CrossRefGoogle Scholar
  134. 134.
    V. Kumar, Y. Bhardwaj, N. Goel, S. Francis, K. Dubey, C. Chaudhari, K. Sarma, S. Sabharwal, Coating characteristics of electron beam cured Bisphenol A diglycidyl ether diacrylate-co-aliphatic urethane diacrylate resins. Surf. Coat. Technol. 202, 5202–5209 (2008)CrossRefGoogle Scholar
  135. 135.
    J.T. Yeh, Y.C. Shu, Characteristics of the degradation and improvement of the thermal stability of poly(siloxane urethane) copolymers. J. Appl. Polym. Sci. 115, 2616–2628 (2010)CrossRefGoogle Scholar
  136. 136.
    F.S. Yen, L.L. Lin, J.L. Hong, Hydrogen-bond interactions between urethane–urethane and urethane–ester linkages in a liquid crystalline poly(ester–urethane). Macromolecules 32, 3068–3079 (1999)CrossRefGoogle Scholar
  137. 137.
    L. Chen, Q. Tai, L. Song, W. Xing, G. Jie, Y. Hu, Thermal properties and flame retardancy of an ether-type UV-cured polyurethane coating. Express Polym. Lett. 4, 539–550 (2010)CrossRefGoogle Scholar
  138. 138.
    X. Qian, Q. Tai, L. Song, R. Yuen, Thermal degradation and flame-retardant properties of epoxy acrylate resins modified with a novel flame retardant containing phosphorous and nitrogen. Fire Saf. Sci. 11, 883–894 (2014)CrossRefGoogle Scholar
  139. 139.
    L. Chen, L. Song, P. Lv, G. Jie, Q. Tai, W. Xing, Y. Hu, A new intumescent flame retardant containing phosphorus and nitrogen: preparation, thermal properties and application to UV curable coating. Prog. Org. Coat. 70, 59–66 (2011)CrossRefGoogle Scholar
  140. 140.
    X. Chen, Y. Hu, C. Jiao, L. Song, Thermal and UV-curing behavior of phosphate diacrylate used for flame retardant coatings. Prog. Org. Coat. 59, 318–323 (2007)CrossRefGoogle Scholar
  141. 141.
    H. Liang, W. Shi, Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polym. Degrad. Stab. 84, 525–532 (2004)CrossRefGoogle Scholar
  142. 142.
    G. Matuschek, Thermal degradation of different fire retardant polyurethane foams. Thermochim. Acta 263, 59–71 (1995)CrossRefGoogle Scholar
  143. 143.
    L. Jiao, H. Xiao, Q. Wang, J. Sun, Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 98, 2687–2696 (2013)CrossRefGoogle Scholar
  144. 144.
    Y.L. Liu, Y.C. Chiu, C.S. Wu, Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins’ thermal stability and flame retardancy. J. Appl. Polym. Sci. 87, 404–411 (2003)CrossRefGoogle Scholar
  145. 145.
    Y.L. Liu, C.S. Wu, Y.S. Chiu, W.H. Ho, Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. J. Polym. Sci. Part A: Polym. Chem. 41, 2354–2367 (2003)CrossRefGoogle Scholar
  146. 146.
    M. Neisius, S. Liang, H. Mispreuve, S. Gaan, Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind. Eng. Chem. Res. 52, 9752–9762 (2013)CrossRefGoogle Scholar
  147. 147.
    X. Chen, Y. Hu, C. Jiao, L. Song, Preparation and thermal properties of a novel flame-retardant coating. Polym. Degrad. Stab. 92, 1141–1150 (2007)CrossRefGoogle Scholar
  148. 148.
    X. Chen, Y. Hu, L. Song, Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polym. Eng. Sci. 48, 116–123 (2008)CrossRefGoogle Scholar
  149. 149.
    G.H. Hsiue, Y.L. Liu, J. Tsiao, Phosphorus-containing epoxy resins for flame retardancy V: synergistic effect of phosphorus–silicon on flame retardancy. J. Appl. Polym. Sci. 78, 1–7 (2000)CrossRefGoogle Scholar
  150. 150.
    C.S. Wu, Y.L. Liu, Y.S. Chiu, Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43, 4277–4284 (2002)CrossRefGoogle Scholar
  151. 151.
    S.-W. Zhu, W.-F. Shi, Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings. Polym. Degrad. Stab. 75, 543–547 (2002)CrossRefGoogle Scholar
  152. 152.
    T. Randoux, J.C. Vanovervelt, H. Van den Bergen, G. Camino, Halogen-free flame retardant radiation curable coatings. Prog. Org. Coat. 45, 281–289 (2002)CrossRefGoogle Scholar
  153. 153.
    Z. Bai, L. Song, Y. Hu, R.K. Yuen, Preparation, flame retardancy, and thermal degradation of unsaturated polyester resin modified with a novel phosphorus containing acrylate. Ind. Eng. Chem. Res. 52, 12855–12864 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation CentreCouncil for Scientific and Industrial ResearchBrummeria, PretoriaSouth Africa
  2. 2.Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation CentreCouncil for Scientific and Industrial ResearchBrummeria, PretoriaSouth Africa

Personalised recommendations